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Abstract

We study geometric properties of the domain of the two parameters (in-
verse temperature, imaginary magnetic field) where the gap equation of the
BCS model with imaginary magnetic field has a positive solution. If the
interaction is weak and the free dispersion relation is non-vanishing, the
domain is a disjoint union of periodic copies of one representative set in
the plane of (inverse temperature, imaginary magnetic field). In this pa-
per we provide a necessary and sufficient condition for the representative
set to be convex as the main result. More precisely we prove the following.
The representative set is convex for any weak coupling and non-vanishing
free dispersion relation if and only if the minimum of the magnitude of the
free dispersion relation over the maximum is larger than the critical value√

9− 4
√
5. In the context of dynamical quantum phase transition (DQPT)

the imaginary magnetic field is considered as the real time variable. So this
is an analysis of the phase boundary of a DQPT in the plane of (inverse
temperature, real time). In particular convexity of the representative phase
boundary is characterized by the critical constant

√
9− 4

√
5. The gap equa-

tion rigorously derived in the preceding paper [Y. Kashima, J. Math. Sci.
Univ. Tokyo 28 (2021), 399–556] is at the core of our analysis. ∗

1 Introduction and main results

1.1 Introduction
It is an interesting subject to study the Bardeen-Cooper-Schrieffer (BCS) model,
which has been a paradigm of describing phase transitions, in non-equilibrium
setting. In recent years a non-equilibrium phenomenon called dynamical quantum
phase transition (DQPT) has been actively investigated. DQPTs are defined by
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non-analyticity of a dynamical analogue of the free energy density with the real
time variable ([9], [7]). It emerged that the BCS model with imaginary magnetic
field introduced in [11], [12], [13] can naturally fit in the formalism of DQPT at
positive temperature. This connection motivates us to reveal universal properties
of this non-Hermitian system.

Let us explain more about the link between the BCS model with imaginary
magnetic field and the concept of DQPT. Let H, Sz denote the BCS model with
the reduced BCS interaction, the z-component of the spin operator respectively.
These operators will be defined explicitly in Subsection 1.2. We want to know
where the following function loses analyticity in R>0 × R.

(β, t) 7→ lim
N→∞

(
− 1

βN
log(Tr e−βH+itSz)

)
.(1.1)

Here β is the inverse temperature and N denotes the system size. We are calling
the complex number it (t ∈ R) imaginary magnetic field for convenience. The real
variable t can be considered as real time in the context of DQPT as explained
below. Since the right-hand side of (1.1) can formally be seen as the free energy
density of the BCS model interacting with the imaginary magnetic field, we call
the loss of analyticity of the function (1.1) phase transition by analogy with the
conventional definition of phase transition. In this paper as in our previous work
[11], [12], [13], [14] the BCS interaction is assumed to be weak, and thus there is
no phase transition defined by non-analyticity of the free energy density without
the imaginary magnetic field

β 7→ lim
N→∞

(
− 1

βN
log(Tr e−βH)

)
.

Therefore the regularity of the function (1.1) is the same as that of

(β, t) 7→ lim
N→∞

(
− 1

βN
log

(
Tr e−βH+itSz

Tr e−βH

))
.

Since H commutes with Sz,

e−βH+itSz = e−βHeitSz = e−βHe−itHeit(H+Sz).

We conclude that the regularity of (1.1) is the same as that of

(β, t) 7→ lim
N→∞

(
− 1

βN
log

(
Tr(e−βHeitSz)

Tr e−βH

))
,(1.2)

(β, t) 7→ lim
N→∞

(
− 1

βN
log

(
Tr(e−βHe−itHeit(H+Sz))

Tr e−βH

))
(1.3)

in R>0×R. The function (1.2) can be considered as the finite-temperature version
of the rate function of the Loschmidt amplitude 〈ψ0, e

itSzψ0〉, where ψ0 is the ground
state of H. The appearance of non-analyticity of the function (1.2) with the time
t defines DQPT. This definition is in line with e.g. [3], [8], [16]. On the other
hand, according to [23], [21], the characteristic function of the work done in the
many-electron system by suddenly changing the initial Hamiltonian H to H+ Sz is
given by

Tr(e−βHe−itHeit(H+Sz))

Tr e−βH
.(1.4)
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Based on this observation, DQPT is defined by non-analyticity of the function
(1.3) with t. This alternative definition appears in e.g. [1], [17], [20]. As explained
in [21], (1.4) is also considered as the finite-temperature version of the Loschmidt
amplitude 〈ψ0, e

−itHeit(H+Sz)ψ0〉. So the variable t can be interpreted as real time in
this definition as well. We can now see that studying properties of (1.1) is relevant
to the recent physical research of DQPT, though the papers [3], [8], [16], [1], [17],
[20] treat 1D quantum spin systems and 2D non-interacting Fermion systems as
benchmark models. In this paper we aim at characterizing the phase boundary
where the function (1.1) loses analyticity geometrically. In other words our purpose
is to characterize the phase boundary of DQPT in the plane of (inverse temperature,
real time).

For clarity we remark that it is not common at present to draw a phase boundary
with the real time axis as we do in this paper. In the physics literature on DQPT
what is called dynamical phase diagrams are drawn with other control parame-
ters for which a dynamical analogue of the free energy density shows non-analytic
behavior with time. See e.g. [25], [6], [16].

In order to explain the main result of this paper in more detail, let us recall
what have been proved in the BCS model with imaginary magnetic field so far.
It was proved in the preceding papers [11], [12], [13] that transitions between the
normal phase and the superconducting phase occur at positive temperature. In
the plane of (β, t) the superconducting phase is a domain where the gap equation
has a positive solution ∆(β, t), which we call gap function or order parameter.
In [11], [12] where the free Fermi surface is non-empty the possible magnitude
of the BCS interaction depends on the temperature and the imaginary magnetic
field. In [13] where the free Fermi surface is empty or in other words the free
dispersion relation is non-vanishing the interaction must still be small. However,
the magnitude can be independent of the temperature and the imaginary magnetic
field. This enables us to fully draw the phase boundary on the plane of (inverse
temperature, imaginary magnetic field) or equivalently (inverse temperature, real
time) for any sufficiently small BCS coupling and study its geometric properties
while justifying the derivation of the gap equation. In [13, Section 2] we saw that
the phase boundary is a disjoint union of periodic copies of one representative
simple curve and the upper half of the representative curve is the reflection of its
lower half across a horizontal line. To understand the situation with non-vanishing
free dispersion relation better, we remark the following relations. Here p(∈ R>0)
denotes a period.

(Phase boundary)
(1.5)

= {(β, t) ∈ R>0 × R | the function (1.1) is not analytic at (β, t)}
= Boundary of {(β, t) ∈ R>0 × R | the gap equation has a positive solution ∆(β, t)}
∩ R>0 × R

=
⊔
m∈Z

{(β, t+ pm) | (β, t) ∈ (the representative simple curve)},

(the representative simple curve) = (the lower half) ∪ (the upper half),
(the upper half) = (reflection of the lower half across a horizontal line),
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{(β, t) ∈ R>0 × R | the gap equation has a positive solution ∆(β, t)}
(1.6)

=
⊔
m∈Z

{(β, t+ pm) | (β, t) ∈ (the representative set)},

Boundary of (the representative set) ∩ R>0 × R
= (the representative simple curve).

Therefore it is sufficient to focus on the lower half of the representative curve to
analyze the whole phase boundary.

To simplify subsequent explanations, let emin, emax (0 < emin ≤ emax) denote
the minimum, the maximum of the magnitude of a non-vanishing free dispersion
relation respectively. These will be rigorously defined in Subsection 1.2.

In this paper we continue working on the BCS model whose free dispersion re-
lation is non-vanishing under the influence of imaginary magnetic field at positive
temperature. As explained above, the set {(β, t) ∈ R>0 × R | ∆(β, t) > 0} is a
disjoint union of periodic copies of one representative set of (β, t), whose boundary
is the representative simple curve. We prove the following statement as the main
result. The representative set is convex for any non-vanishing free dispersion rela-
tion having emin, emax and any weak coupling constant if and only if emin

emax
is larger

than the critical value
√

9− 4
√
5.

Since the upper half of the representative simple curve is the reflection of the
lower half, the convexity of the representative set is equivalent to the convexity of
the lower half of the representative curve. The main results of [13, Section 2], [14]
and this paper can be summarized in terms of geometric properties of the lower
half of the representative curve of the phase boundary as follows.

• In [13, Theorem 2.19] the unique existence of a local minimum point is char-
acterized by the relation between emin

emax
and the critical constant

√
17− 12

√
2.

• In [14, Theorem 1.7, Theorem 1.8] the (non-)existence of a stationary point
of inflection is characterized by the relation between emin

emax
and the critical

constant
√

17− 12
√
2.

• In Theorem 1.11 of this paper the convexity is characterized by the relation
between emin

emax
and the critical constant

√
9− 4

√
5.

A more rigorous version of the summary is given in Remark 1.15. Since the convex-
ity implies the uniqueness of a local minimum point and

√
9− 4

√
5(≈ 0.236068) >√

17− 12
√
2(≈ 0.171573), the stronger property of the phase boundary is charac-

terized by the stronger inequality emin

emax
>
√

9− 4
√
5 in Theorem 1.11 than in [13,

Theorem 2.19]. We are interested in the fact that various fundamental properties
of the phase boundary can be systematically characterized by the relation between
emin

emax
and the critical constants. This is the mathematical motivation behind this

series. We add that existence of a stationary point of inflection is equivalent to
existence of a higher order phase transition with temperature, and thus [14, The-
orem 1.7, Theorem 1.8] characterize the (non-)existence of a higher order phase
transition with temperature as well.

We focus on a class of non-vanishing free dispersion relations mainly because the
derivation of the gap equation from the many-Fermion system is justified for any
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temperature and imaginary magnetic field. DQPTs in insulating Hamiltonians with
ground state topology are a central topic in the research area. Some of the bench-
mark models can be written with one-particle Hamiltonian matrices belonging to
our class. These are e.g. the Haldane model ([5], [8]), the Su-Schrieffer-Heeger
model ([22], [10]). Concrete construction of these models with our notations was
given in [14, Remark 1.2]. It is encouraging that our class of non-vanishing free
dispersion relations is relevant to the recent research of DQPT.

There are technically close relations between [13, Section 2] and [14]. The
previous work [14] applies some key lemmas established in [13, Section 2]. In
this paper we admit the gap equation derived in [13]. We also have a few simple
lemmas in common with [13, Section 2], [14]. However, the technical construction
is essentially different from these preceding papers. Key lemmas necessary to prove
the main results are newly established here. In this sense this paper is more self-
contained than [14].

We do not find a research article on DQPT in the BCS model at positive
temperature, apart from [11], [12], [13], [14] at present. Concerning DQPTs in the
BCS model at zero temperature, we cite the recent paper [19]. Though only a
few articles report on DQPT in the BCS model so far, there are many papers on
non-equilibrium phases characterized by long time behavior of the dynamical order
parameter of the model. See e.g. the references of [19] or [18], [24]. The paper [19]
investigates whether the DQPT can indicate these non-equilibrium phases defined
differently.

This paper is outlined as follows. In the next subsection we set up notations
and state the main results. In Section 2 we prove that if emin

emax
>
√
9− 4

√
5, the

representative set of the domain where the gap function is positive is convex for any
sufficiently small coupling constant. In Section 3 we prove that if emin

emax
<
√
9− 4

√
5,

the convexity of the representative set does not necessarily hold. Finally in Section
4 we show that if emin

emax
=
√

9− 4
√
5, the convexity does not necessarily hold,

either. This completes the characterization of the convexity in terms of the relation
between emin

emax
and the critical constant

√
9− 4

√
5.

1.2 Notations and the main results
Here we introduce necessary notations and state the main results. We are going
to analyze the phase boundary, which is governed by the gap equation. The gap
equation was originally derived from a many-electron system in [13]. Though we
do not explain the derivation in detail, it must be informative to present the cor-
responding many-electron system explicitly. Let the number d(∈ N) denote the
spatial dimension. Let v1, · · · ,vd be a basis of Rd and v̂1, · · · , v̂d be its dual basis.
Let b, L ∈ N. We consider a general spatial lattice which has b sites in its unit cell.
Such a lattice can be identified as B × Γ, where B := {1, · · · , b},

Γ :=

{
d∑

j=1

mjvj

∣∣∣∣∣ mj ∈ {0, 1, · · · , L− 1} (j = 1, · · · , d)

}
.

The momentum lattice dual to B × Γ is B × Γ∗, where

Γ∗ :=

{
d∑

j=1

m̂jv̂j

∣∣∣∣∣ m̂j ∈
{
0,

2π

L
, · · · , 2π

L
(L− 1)

}
(j = 1, · · · , d)

}
.
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The free Hamiltonian H0 is defined by

H0 :=
∑

(ρ,x),(η,y)
∈B×Γ

∑
σ∈{↑,↓}

∑
k∈Γ∗

ei〈k,x−y〉E(k)(ρ, η)ψ∗
ρxσψηyσ,(1.7)

where 〈·, ·〉 denotes the standard inner product of Rd and ψ∗
ρxσ, ψρxσ ((ρ,x, σ) ∈

B × Γ × {↑, ↓}) denote the creation, the annihilation operator on the Fermionic
Fock space Ff (L

2(B × Γ × {↑, ↓})) respectively. The matrix-valued function E :
Rd → Mat(b,C) plays an important role in this paper. We call it one-particle free
Hamiltonian matrix and its eigenvalues parameterized by the momentum variable
k free dispersion relations. With constants emin, emax ∈ R>0 satisfying emin ≤ emax

we define the set E(emin, emax) of one-particle free Hamiltonian matrices as follows.
E ∈ E(emin, emax) if and only if

E ∈ C∞(Rd,Mat(b,C)),(1.8)
E(k) = E(k)∗, ∀k ∈ Rd,

E(k+ 2πv̂j) = E(k), ∀k ∈ Rd, j ∈ {1, · · · , d},
E(k) = E(−k), ∀k ∈ Rd,(1.9)
inf
k∈Rd

inf
u∈Cb

with ‖u‖Cb=1

‖E(k)u‖Cb = emin,(1.10)

sup
k∈Rd

‖E(k)‖b×b = emax.(1.11)

Here ‖ · ‖Cb is the standard norm of Cb induced by the Hermitian inner product
and ‖ · ‖b×b is the operator norm on Mat(b,C). Here we consider Mat(b,C) as
a Banach space with the norm ‖ · ‖b×b and C∞(Rd,Mat(b,C)) as the set of the
Banach space valued smooth functions. In fact the smoothness (1.8) can be relaxed
and the symmetry (1.9) is not needed at all to prove the main results of this
paper. We assume them only to identify the gap equation analyzed here as that
rigorously derived from the many-electron system based on these conditions in [13].
Crystalline lattices well studied in condensed matter physics can be expressed as B×
Γ. For example d = 2, b = 2, v1 = (1, 0)T , v2 = (1

2
,
√
3
2
)T for the honeycomb lattice,

d = 2, b = 3, v1 = (1, 0)T , v2 = (0, 1)T for the Copper Oxide lattice. By tuning
the onsite energy free Hamiltonians of hopping electron on these lattices can be
formulated in the form (1.7) with some E ∈ E(emin, emax). The Su-Schrieffer-Heeger
(SSH) model ([22], [10]) and the Haldane model ([5], [8]) are benchmark models
showing DQPTs at positive temperature. These models are originally spinless. Our
free Hamiltonian covers their trivial extensions with spin. See [14, Remark 1.2] for
formulating the SSH model and the Haldane model into the form (1.7).

In the infinite-volume limit L → ∞ the momentum lattice Γ∗ becomes the
following set.

Γ∗
∞ :=

{
d∑

j=1

kjv̂j

∣∣∣∣∣ kj ∈ [0, 2π] (j = 1, · · · , d)

}
(⊂ Rd).

For E ∈ E(emin, emax) we define the function gE : R>0 × R× R → R by

gE(x, t, z)

(1.12)
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:= − 2

|U |
+Dd

∫
Γ∗
∞

dkTr

(
sinh(x

√
E(k)2 + z2)

(cos(t/2) + cosh(x
√
E(k)2 + z2))

√
E(k)2 + z2

)
,

where Dd := | det(v̂1, · · · , v̂d)|−1(2π)−d and U ∈ R<0. Originally the parameter
U controls the strength of attractive interaction between Cooper pairs. For any
function f : R\{0} → C and non-singular Hermitian matrix E ∈ Mat(b,C) we
define f(E) ∈ Mat(b,C) by the spectral decomposition. For (β, t) ∈ R>0 × R we
call the equation gE(β, t,∆) = 0 with unknown ∆ ∈ R≥0 gap equation.

The free energy density derived in [13, Theorem 1.3 (ii)] explicitly depends on
the gap function ∆. Let us recall the statement. For any proposition P 1P := 1
if P is true, 1P := 0 otherwise. Let E ∈ E(emin, emax). For (β, t) ∈ R>0 × R let
∆ ∈ R≥0 be a solution to the gap equation if exists. As we will see in Lemma 1.1,
such ∆ is unique. Set ∆ := 0 if there is no solution to the gap equation. If

U ∈
(
−2c′

b
min{emin, e

d+1
min}, 0

)
(1.13)

with c′ ∈ (0, 1] depending only on d, b, (v̂j)
d
j=1 and the quantity

sup
k∈Rd

sup
mj∈N∪{0}
(j=1,··· ,d)

∥∥∥∥∥
d∏

j=1

∂mj

∂k
mj

j

E(k)

∥∥∥∥∥
b×b

1∑d
j=1 mj≤d+2,

lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−βH+itSz)

)
(1.14)

=
∆2

|U |
− Dd

β

∫
Γ∗
∞

dkTr log

(
2 cos

(
t

2

)
e−βE(k)

+ eβ(
√

E(k)2+∆2−E(k)) + e−β(
√

E(k)2+∆2+E(k))

)
,

where

H := H0 + V,(1.15)

V :=
U

Ld

∑
(ρ,x),(η,y)

∈B×Γ

ψ∗
ρx↑ψ

∗
ρx↓ψηy↓ψηy↑, Sz :=

1

2

∑
(ρ,x)∈B×Γ

(ψ∗
ρx↑ψρx↑ − ψ∗

ρx↓ψρx↓).

The operator V is the reduced BCS interaction and Sz is the z-component of the
spin operator. The operator H is called the BCS model or the reduced BCS model
because of the form of interaction. For clarity we remark that in [13, Theorem 1.3
(ii)] the infinite-volume limit

lim
L→∞
L∈N

(
− 1

βLd
log(Tr e−β(H+iθSz))

)
with θ ∈ R was derived. Since the real parameter θ can be chosen arbitrarily, the
above statement follows. The Fermionic operators appear only in this subsection.

As summarized in Lemma 1.3 later, the free energy density loses analyticity on
the boundary of the domain of (β, t) where the gap equation has a positive solution.
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To describe this precisely, we need to know properties of the gap equation. The
following lemma is essentially the same as [13, Lemma 1.2]. However, as it is
important for the present paper, let us give the proof here. The claim (iv) provides
the rigorous version of (1.6). Let tanh−1 : (−1, 1) → R be the inverse function of
tanh : R → (−1, 1).

Lemma 1.1. Assume that U ∈ (−2emin

b
, 0). Then there uniquely exists

βc ∈
(
0,

2

emin

tanh−1

(
b|U |
2emin

)]
such that the following statements hold.

(i) If β > βc, gE(β, t, z) 6= 0 for any (t, z) ∈ R× R≥0.

(ii) gE(βc, t,∆) = 0 with (t,∆) ∈ R × R≥0 if and only if t = 2π (mod 4π) and
∆ = 0.

(iii) If 0 < β < βc, there exists (t,∆) ∈ R × R>0 such that gE(β, t,∆) = 0.
Such ∆ is unique. Moreover there uniquely exists τ(β) ∈ (π, 2π) such that
gE(β, δτ(β) + 4mπ, 0) = 0 for any δ ∈ {−1, 1}, m ∈ Z.

(iv) Let the function β 7→ τ(β) : (0, βc) → (π, 2π) be defined by the claim (iii).

{(β, t) ∈ R>0 × R | there uniquely exists ∆ ∈ R>0 such that gE(β, t,∆) = 0}
(1.16)

= {(β, t) ∈ R>0 × R | gE(β, t, 0) > 0}

=
⊔
m∈Z

{(β, t) ∈ R>0 × R | β ∈ (0, βc), t ∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π)}.

Proof. Observe that

gE(β, 2π, 0) = − 2

|U |
+Dd

∫
Γ∗
∞

dkTr

(
1

tanh(β
2
E(k))E(k)

)
.

It follows that β 7→ gE(β, 2π, 0) is strictly monotone decreasing and

lim
β↘0

gE(β, 2π, 0) = +∞, lim
β↗∞

gE(β, 2π, 0) ≤ − 2

|U |
+

b

emin

< 0.

Thus there uniquely exists βc ∈ R>0 such that gE(βc, 2π, 0) = 0. Moreover

0 ≤ − 2

|U |
+

b

tanh(βc

2
emin)emin

or

βc ≤
2

emin

tanh−1

(
b|U |
2emin

)
.

The following property is useful.

For any (β, t) ∈ R>0 × R, z 7→ gE(β, t, z) : R≥0 → R is strictly monotone(1.17)
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decreasing. Moreover, lim
z→∞

gE(β, t, z) = − 2

|U |
< 0.

The claimed decreasing property can be confirmed by showing that

d

dX

(
1

a+ cosh(X)

)
· sinh(X)

X
+

1

a+ cosh(X)

d

dX

(
sinh(X)

X

)
< 0,

∀a ∈ [−1, 1], X ∈ R>0.

By (1.17)

gE(β, t, z) ≤ gE(β, t, 0) ≤ gE(β, 2π, 0) < gE(βc, 2π, 0) = 0,

∀(β, t, z) ∈ (βc,∞)× R× R≥0.

Thus the claim (i) holds.
If t 6= 2π (mod 4π), ∆ ∈ R≥0 and gE(βc, t,∆) = 0,

0 = gE(βc, t,∆) < gE(βc, 2π,∆) ≤ gE(βc, 2π, 0) = 0,

which is a contradiction. If t ∈ R, ∆ > 0 and gE(βc, t,∆) = 0,

0 = gE(βc, t,∆) < gE(βc, t, 0) ≤ gE(βc, 2π, 0) = 0,

which is again a contradiction. Thus, if gE(βc, t,∆) = 0 with (t,∆) ∈ R × R≥0,
t = 2π (mod 4π) and ∆ = 0. The converse is clear. The claim (ii) holds.

If β ∈ (0, βc),

gE(β, 2π, 0) > gE(βc, 2π, 0) = 0, lim
z→∞

gE(β, 2π, z) = − 2

|U |
< 0.

These imply that there exists (t,∆) ∈ R×R>0 such that gE(β, t,∆) = 0. By (1.17)
such ∆ is unique. By assumption gE(β, π, 0) ≤ − 2

|U |+
b

emin
< 0. Since gE(β, 2π, 0) >

0, there uniquely exists τ(β) ∈ (π, 2π) such that gE(β, δτ(β) + 4mπ, 0) = 0 for any
δ ∈ {−1, 1}, m ∈ Z. This ensures the claim (iii).

One can deduce the first equality of (1.16) from the property (1.17). For any β ∈
(0, βc), m ∈ Z, t ∈ (τ(β)+4mπ,−τ(β)+4(m+1)π) gE(β, t, 0) > gE(β, τ(β), 0) = 0.
Conversely let us assume that (β, t) ∈ R>0 × R and gE(β, t, 0) > 0. By (1.17)
there exists ∆ ∈ R>0 such that gE(β, t,∆) = 0. By (i), (ii) β < βc. If t /∈
(τ(β) + 4mπ,−τ(β) + 4(m + 1)π) for any m ∈ Z, gE(β, t, 0) ≤ gE(β, τ(β), 0) = 0.
Contradiction. Thus there exists m ∈ Z such that t ∈ (τ(β)+4mπ,−τ(β)+4(m+
1)π). The second equality of (1.16) is also proved.

In order to ensure the existence of the critical inverse temperature βc, we always
deal with U ∈ R<0 satisfying |U | < 2emin

b
in this paper. The negative parameter U

controls the strength of attractive interaction. See (1.15). The sign of U matters in
the derivation of the gap equation from the many-electron system. In this paper,
however, the sign plays no essential role.

Concerning the function τ : (0, βc) → (π, 2π), more detailed properties are
known.

Lemma 1.2. ([13, Lemma 2.2])
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(i) τ is real analytic in (0, βc).

(ii)

lim
β↗βc

τ(β) = lim
β↘0

τ(β) = 2π.

(iii)

lim
β↗βc

dτ

dβ
(β) = +∞, lim

β↘0

dτ

dβ
(β) = −∞.

To state the rigorous version of the relation (1.5), we define the function ∆ :
R>0 × R → R≥0 as follows. For (β, t) ∈ R>0 × R, if gE(β, t, 0) > 0, ∆(β, t)(∈ R>0)
is the unique solution to the gap equation. Otherwise ∆(β, t) := 0. By (1.16)
the function ∆ is well-defined. Then we define the function (β, t) 7→ FE(β, t) :
R>0 ×R → R by the right-hand side of (1.14) with ∆ = ∆(β, t). In fact we do not
use the following lemma to prove the main results of this paper. We state it only
to understand the meaning of the sets analyzed as the main objects in this paper.
Lemma 1.3. Assume that U ∈ (−2emin

b
, 0). Then the following equalities hold.

{(β, t) ∈ R>0 × R | the function FE is not analytic at (β, t)}
= {(β, t0) ∈ R>0 × R | the function t 7→ FE(β, t) is not analytic at t = t0}
∪ {(βc, 2π + 4πm) | m ∈ Z}

=
⊔
m∈Z

{(β, τ(β) + 4mπ), (β,−τ(β) + 4(m+ 1)π) | β ∈ (0, βc)} ∪ {(βc, 2π + 4πm)}

= ∂{(β, t) ∈ R>0 × R | ∆(β, t) > 0} ∩ R>0 × R.

For any subset S of R2 ∂S denotes its boundary in R2.
Proof. The 1st and the 2nd equality follows from [13, (2.3), Proposition 2.5]. The
3rd equality follows from (1.16) and Lemma 1.2.
Remark 1.4. Since ∆(βc, t) = 0 for any t ∈ R, t 7→ FE(βc, t) is analytic in R.
This together with Lemma 1.3 implies that

{(β, t0) ∈ R>0 × R | the function t 7→ FE(β, t) is not analytic at t = t0}

=
⊔
m∈Z

{(β, τ(β) + 4mπ), (β,−τ(β) + 4(m+ 1)π) | β ∈ (0, βc)}.

Since DQPT is defined by non-analyticity of FE(β, t) with the real time variable t,
the above equality characterizes the phase boundary of DQPT in the BCS model.

The above lemma suggests that the phase boundary is the disjoint union of
periodic copies of the representative simple curve

C0 = {(β, τ(β)), (β,−τ(β) + 4π) | β ∈ (0, βc)} ∪ {(βc, 2π)}.

To analyze the whole phase boundary, it suffices to focus on the function τ :
(0, βc) → (π, 2π). Moreover, Lemma 1.1 (iv) suggests that the domain of (β, t)
where the gap equation has a positive solution consists of periodic copies of the
representative set S0 defined by

S0 := {(β, t) ∈ R>0 × R | β ∈ (0, βc), t ∈ (τ(β),−τ(β) + 4π)}.

Observe that C0 = ∂S0 ∩ R>0 × R. The set S0 is pictured in Figure 1.

10



0 β

t

βc

π

2π

3π

4π

S0

t = τ(β)

t = −τ(β) + 4π

Figure 1: The representative set S0 and its boundary.

Remark 1.5. In [13, Proposition 2.4] we proved that C0∪{(0, 2π)} is a 1-dimensional
real analytic submanifold of R2.

The main results of this paper concern convexity of the function τ(·) and the
set S0. Specifically Proposition 1.6, Proposition 1.7, Proposition 1.8 and Theorem
1.11 are the main results.

Proposition 1.6. Assume that emin

emax
>
√

9− 4
√
5. Then there exists U0 ∈

(0, emin

sinh(2)b
] such that for any U ∈ [−U0, 0), E ∈ E(emin, emax) and β ∈ (0, βc)

d2τ
dβ2 (β) > 0. Moreover

lim
β↗βc

d2τ

dβ2
(β) = +∞, lim

β↘0

d2τ

dβ2
(β) = +∞.

The convexity of τ(·) does not always hold when emin

emax
≤
√
9− 4

√
5.

Proposition 1.7. Assume that emin

emax
<
√

9− 4
√
5. Then there exist U0 ∈ (0, 2emin

b
),

E ∈ E(emin, emax) such that the following statement holds. For any U ∈ [−U0, 0)
there exists β ∈ (0, βc) such that d2τ

dβ2 (β) < 0.

When emin

emax
=
√

9− 4
√
5, a slightly weaker conclusion holds. More precisely,

the choice of E depends on U .

Proposition 1.8. Assume that emin

emax
=
√

9− 4
√
5. Then there exists U0 ∈

(0, 2emin

b
) such that the following statement holds. For any U ∈ [−U0, 0) there

exist E ∈ E(emin, emax), β ∈ (0, βc) such that d2τ
dβ2 (β) < 0.

Remark 1.9. We should remark at this stage that the proof of Proposition 1.8
relies on exact calculations of low order terms of power series expansion of an
analytic function, which is the most complicated part in this paper. On the other
hand, Proposition 1.6, Proposition 1.7 can be proven more systematically.

We combine these propositions to characterize the convexity of the set S0 as
the main theorem. Let us confirm basic relations between the 2nd order derivative
of τ(·) and the convexity of S0. Remind us that for any set S ⊂ Rn S is called
convex if sx1 + (1− s)x2 ∈ S for any x1,x2 ∈ S, s ∈ [0, 1].
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Lemma 1.10. (i) If d2τ
dβ2 (β) > 0 for any β ∈ (0, βc), S0 is convex.

(ii) If there exists β ∈ (0, βc) such that d2τ
dβ2 (β) < 0, S0 is not convex.

Proof. (i): Take any (β1, t1), (β2, t2) ∈ S0 and s ∈ [0, 1]. By the assumption

τ(sβ1 + (1− s)β2) ≤ sτ(β1) + (1− s)τ(β2) < st1 + (1− s)t2,

4π − τ(sβ1 + (1− s)β2) ≥ s(4π − τ(β1)) + (1− s)(4π − τ(β2)) > st1 + (1− s)t2.

Thus s(β1, t1) + (1− s)(β2, t2) ∈ S0. Therefore S0 is convex.
(ii): By the assumption there exist β1, β2 ∈ (0, βc), s ∈ (0, 1) such that τ(sβ1+

(1− s)β2) > sτ(β1) + (1− s)τ(β2). We can choose small ε > 0 so that

τ(βj) + ε < 2π (j = 1, 2),

τ(sβ1 + (1− s)β2) > s(τ(β1) + ε) + (1− s)(τ(β2) + ε).

Thus (βj, τ(βj) + ε) ∈ S0 (j = 1, 2) and

s(β1, τ(β1) + ε) + (1− s)(β2, τ(β2) + ε) /∈ S0.

Therefore S0 is not convex.

By combining Proposition 1.6, Proposition 1.7, Proposition 1.8 and Lemma
1.10 we can deduce the following theorem.

Theorem 1.11. For any d, b ∈ N, basis (v̂j)
d
j=1 of Rd and emin, emax ∈ R>0

satisfying emin ≤ emax the following statements are equivalent to each other.

(i) There exists U0 ∈ (0, 2emin

b
) such that for any U ∈ [−U0, 0), E ∈ E(emin, emax)

and β ∈ (0, βc)
d2τ
dβ2 (β) > 0.

(ii) There exists U0 ∈ (0, 2emin

b
) such that for any U ∈ [−U0, 0) and E ∈ E(emin, emax)

S0 is convex.

(iii) emin

emax
>
√

9− 4
√
5.

Proof. The equivalence between (i) and (iii) follows from Proposition 1.6, Proposi-
tion 1.7 and Proposition 1.8. By Lemma 1.10 (i) the claim (i) implies the claim (ii).
If (iii) does not hold, by Proposition 1.7 and Proposition 1.8 for any U0 ∈ (0, 2emin

b
)

there exist U ∈ [−U0, 0), E ∈ E(emin, emax) and β ∈ (0, βc) such that d2τ
dβ2 (β) < 0.

Thus by Lemma 1.10 (ii) S0 is not convex, which means that (ii) does not hold.
Therefore (ii) implies (iii). The claims (i), (ii), (iii) are equivalent to each other.

Remark 1.12. The behavior of d2τ
dβ2 (·) claimed in Proposition 1.6, Proposition 1.7

and Proposition 1.8 implies a physical property of the phase transition, which is
so-called reentrant phenomenon along a line drawn in the phase diagram. Mathe-
matically we define the reentry into the exterior from the interior as follows. Take
x1,x2 ∈ R>0 × R satisfying x1 6= x2.

There exists ε ∈ R>0 such that(EIE)(x1,x2)
∆(sx1 + (1− s)x2) > 0, ∀s ∈ (0, 1),

∆(sx1 + (1− s)x2) = 0, ∀s ∈ [−ε, 0] ∪ [1, 1 + ε].
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Similarly we define the reentry into the interior from the exterior as below.

There exists ε ∈ R>0 such that(IEI)(x1,x2)
∆(sx1 + (1− s)x2) = 0, ∀s ∈ [0, 1],

∆(sx1 + (1− s)x2) > 0, ∀s ∈ [−ε, 0) ∪ (1, 1 + ε].

Recalling the definition of the simple curve C0, we can confirm the following.

• If d2τ
dβ2 (β) > 0 for any β ∈ (0, βc), then for any x1,x2 ∈ C0 with x1 6= x2

(EIE)(x1,x2) holds.

• If d2τ
dβ2 (β) < 0 for some β ∈ (0, βc), then for any δ ∈ R>0 there exist x1,x2 ∈ C0

such that 0 < ‖x1 − x2‖R2 < δ and (IEI)(x1,x2) holds.

Accordingly we can replace the conclusion “for any β ∈ (0, βc)
d2τ
dβ2 (β) > 0” by “for

any x1,x2 ∈ C0 with x1 6= x2 (EIE)(x1,x2) holds.” in the statement of Proposition
1.6. Also we can replace the conclusion “there exists β ∈ (0, βc) such that d2τ

dβ2 (β) <

0” by “for any δ ∈ R>0 there exists x1,x2 ∈ C0 such that 0 < ‖x1 − x2‖R2 < δ and
(IEI)(x1,x2) holds.” in the statements of Proposition 1.7, Proposition 1.8.

Remark 1.13. We are analyzing the phase boundary where the function FE loses
analyticity. However, it is not obvious if we can prove the derivation of FE from
the many-electron system as stated in (1.14) together with the main results of this
paper. By considering the fact that c′ ∈ (0, 1] depends on the derivatives of E we
can deduce the following from Proposition 1.6 and Proposition 1.7.

• If emin

emax
>
√

9− 4
√
5, for any E ∈ E(emin, emax) there exists U0 ∈ (0, emin

sinh(2)b
]

such that for any U ∈ [−U0, 0), β ∈ (0, βc)
d2τ
dβ2 (β) > 0 and the equality (1.14)

is justified.

• If emin

emax
<
√

9− 4
√
5, there exist U0 ∈ (0, 2emin

b
), E ∈ E(emin, emax) such that

for any U ∈ [−U0, 0)
d2τ
dβ2 (β) < 0 for some β ∈ (0, βc) and the equality (1.14)

is justified.

As we will see in Section 4, we have to choose E ∈ E(emin, emax) after fixing
U ∈ [−U0, 0) in the proof of Proposition 1.8. It is not clear if the condition
(1.13) is satisfied in this situation. Therefore we cannot prove non-convexity of the
phase boundary in case that emin

emax
=
√

9− 4
√
5 as claimed in Proposition 1.8 while

justifying the equality (1.14).

Remark 1.14. In the preceding papers [13], [14] we had numerical examples show-
ing non-convexity of the function τ : (0, βc) → R. The picture [13, Figure 2,
(b)] shows the graph of τ(·) having 2 local mininum points when emin

emax
= 1

7
(<√

9− 4
√
5). The pictures in [14, Figure 4] show that dτ

dβ
(·) can be decreasing when

emin

emax
= 1

8.342
, 1

6.643
(<
√
9− 4

√
5).

Remark 1.15. Here we can summarize the main results of [13, Section 2], [14]
and this paper concerning the behavior of τ(·) more rigorously than in Subsection
1.1. Let P be a proposition and cr be a positive constant. We have been proving
the following statement.

For any d, b ∈ N, basis (v̂j)
d
j=1 of Rd and emin, emax ∈ R>0 satisfying emin ≤ emax

(i), (ii) are equivalent to each other.
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(i) There exists U0 ∈ (0, 2emin

b
) such that for any U ∈ [−U0, 0), E ∈ E(emin, emax)

P holds.

(ii) emin

emax
> cr.

The proposition P and the constant cr are given as below.

• In [13, Theorem 2.19]

P : τ(·) has only one local minimum point in (0, βc).

cr =

√
17− 12

√
2.

• In [14, Theorem 1.8]

P : τ(·) has no stationary point of inflection in (0, βc).

cr =

√
17− 12

√
2.

• In Theorem 1.11 of this paper

P :
d2τ

dβ2
(β) > 0 for any β ∈ (0, βc).

cr =

√
9− 4

√
5.

Remark 1.16. In [13, Proposition 2.8] we proved that if emin

emax
≥ e0 for some

e0 ∈ (0, 1), d2τ
dβ2 (β) > 0 for any U ∈ [− emin

sinh(2)b
, 0), E ∈ E(emin, emax) and β ∈ (0, βc).

Since the proof was based on non-optimal estimations, we were unable to find
the optimal value of such e0 there. Theorem 1.11 here presents an optimal value√

9− 4
√
5.

Remark 1.17. Some may be more accustomed to a graph with temperature than
inverse temperature. Here let us remark what we know on the behavior of the func-
tion T 7→ τ( 1

T
) : ( 1

βc
,∞) → (π, 2π). Based on the equality d

dT
(τ( 1

T
)) = − 1

T 2
dτ
dβ
( 1
T
)

and [13, Theorem 2.19], [14, Theorem 1.8], we can characterize uniqueness of a local
minimum point and non-existence of a stationary point of inflection by the constant√

17− 12
√
2 in the same way as in Remark 1.15. Regardless of the value of emin

emax
,

the function T 7→ τ( 1
T
) is not convex, i.e. d2

dT 2 (τ(
1
T
)) < 0 for some T ∈ ( 1

βc
,∞).

This can be deduced from the properties that τ( 1
T
) < 2π for any T ∈ ( 1

βc
,∞) and

limT→∞ τ( 1
T
) = 2π.

Remark 1.18. One basic assumption in this paper is the weak coupling condition
|U | < 2emin

b
. There are two reasons why we always assume this. Firstly, the

condition (1.13) under which the free energy density together with the gap equation
is rigorously derived in [13, Theorem 1.3] implies this inequality, and thus we can
interpret the main results Proposition 1.6, Proposition 1.7 as rigorous properties
of the infinite-volume limit of the microscopic model by assuming (1.13) from the
beginning. This is explained in Remark 1.13 in more detail. Secondly, under
this condition the phase boundary has universal properties as described in Lemma
1.1, Lemma 1.2 and Lemma 1.3. We have decided to focus on the analysis of these
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properties. It is possible to define the gap equation alone under the strong coupling
condition |U | ≥ 2emin

b
, though the derivation from the microscopic model cannot

be proved by the multi-scale analysis we have developed in this series. Under
the condition |U | ≥ 2emin

b
the phase boundary can radically change its geometric

properties, depending on the choice of E ∈ E(emin, emax). Here let us summarize
some of the basic provable properties by putting the issue of derivation aside.

For E ∈ E(emin, emax), set

g∞E := − 2

|U |
+Dd

∫
Γ∗
∞

dkTr

(
1

|E(k)|

)
.

Observe that g∞E = limβ↗∞ gE(β, t, 0) for any t ∈ R. While g∞E < 0 for any
E ∈ E(emin, emax) if |U | < 2emin

b
, g∞E can change its sign, depending on the choice

of E ∈ E(emin, emax), if |U | ≥ 2emin

b
. There are three cases.

g∞E < 0.(Case 1)
g∞E = 0.(Case 2)
g∞E > 0.(Case 3)

For example if |U | = 2emin

b
, 0 < b′ < b, 0 < emin < emax and

E =

(
eminIb′ 0

0 emaxIb−b′

)
,

(Case 1) holds. If |U | = 2emin

b
, emin = emax and E = eminIb, (Case 2) holds. If

|U | > 2emin

b
, emin = emax and E = eminIb, (Case 3) holds. Here let us characterize

the set

D> = {(β, t) ∈ R>0 × R | there uniquely exists ∆ ∈ R>0 such that gE(β, t,∆) = 0}

in a manner similar to Lemma 1.1 (iv).

• In (Case 1) there exists βc ∈ R>0 and τ : (0, βc) → (π, 2π) such that
limβ↘0 τ(β) = 2π, limβ↗βc τ(β) = 2π,

D> =⊔
m∈Z

{(β, t) ∈ R>0 × R | β ∈ (0, βc), t ∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π)}.

• In (Case 2) there exists τ : R>0 → (π, 2π) such that limβ↘0 τ(β) = 2π,

D> =
⊔
m∈Z

{(β, t) ∈ R>0 × R | t ∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π)}.

• In (Case 3) there exists βc ∈ R>0 and τ : (0, βc) → (0, 2π) such that
limβ↘0 τ(β) = 2π, limβ↗βc τ(β) = 0,

D> =⊔
m∈Z

{(β, t) ∈ R>0 × R | β ∈ (0, βc), t ∈ (τ(β) + 4mπ,−τ(β) + 4(m+ 1)π)}

t {βc} × R\4πZ t (βc,∞)× R.
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In (Case 1) the situation is close to that under the condition |U | < 2emin

b
. However

in (Case 2) the phase boundary exists for all β ∈ R>0. Also in (Case 3) the gap
function ∆ is positive for any (β, t) ∈ (βc,∞)×R. So the phase diagram is globally
different in these cases. Detailed analysis of them is open at present.

Remark 1.19. As we have already mentioned in Subsection 1.1, the characteristic
function of the work done in our many-body system by changing the Hamiltonian
H to H + Sz is equal to (1.4). See [23] for the derivation. The work distribution
function is its Fourier transform. We note that

Tr(e−βHe−itHeit(H+Sz))

Tr e−βH
=

bLd∑
n=−bLd

eit
n
2
Trn e

−βH

Tr e−βH
,

where Trn e
−βH denotes the trace of e−βH over the subspace{

ψ ∈ Ff (L
2(B × Γ× {↑, ↓}))

∣∣ Szψ =
n

2
ψ
}
.

This implies that the possible values of the work are n
2
(n = −bLd,−bLd+1, · · · , bLd)

and the work distribution function PL(·) is given by

PL(w) =
1

4π

∫ 2π

−2π

dte−itwTr(e
−βHe−itHeit(H+Sz))

Tr e−βH
,

w ∈
{n
2

∣∣ n = −bLd,−bLd + 1, · · · , bLd
}
.

Observe that

PL

(n
2

)
=

Trn e
−βH

Tr e−βH
≥ 0, ∀n ∈ {−bLd,−bLd + 1, · · · , bLd},(1.18)

bLd∑
n=−bLd

PL

(n
2

)
= 1.

Properties of work statistics after quantum quench have been studied in physics
literature (e.g. [21], [9], [1]). For example the letter [21] demonstrates via analysis
of Loschmidt echo that the work distribution function can diverge to infinity in
case of a local quench in a quantum Ising chain. Here let us derive one property of
our work distribution function from our previous results. Set

P(β, L) :=
bLd∑

n=−bLd

(
1n is evenPL

(n
2

)
− 1n is oddPL

(n
2

))
so that

P(β, L) =
Tr e−βH+i2πSz

Tr e−βH
.

It follows from [13, Theorem 1.3, Proposition 2.5 (ii)] that if U satisfies the condition
(1.13), P(β, L) > 0 for sufficiently large L ∈ N, limL→∞,L∈N

1
Ld logP(β, L) exists,

β 7→ limL→∞,L∈N
1
Ld logP(β, L) is C1-class in R>0,

lim
β↗βc

∂2

∂β2
lim
L→∞
L∈N

1

Ld
logP(β, L), lim

β↘βc

∂2

∂β2
lim
L→∞
L∈N

1

Ld
logP(β, L)
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exist and

lim
β↗βc

∂2

∂β2
lim
L→∞
L∈N

1

Ld
logP(β, L) 6= lim

β↘βc

∂2

∂β2
lim
L→∞
L∈N

1

Ld
logP(β, L).

Though the physical interpretation might not be straightforward, this is a phe-
nomenon caused by the interaction. In fact if U = 0, β 7→ limL→∞,L∈N

1
Ld logP(β, L)

is real analytic in R>0. More generally we can deduce a jump discontinuity of

∂2

∂β2
lim
L→∞
L∈N

1

Ld
log

 bLd∑
n=−bLd

eit
n
2PL

(n
2

)
with β for any t ∈ R close to 2π from our previous results.

In [1], [9] the Gärtner-Ellis theorem on large deviation principle was applied to
study the rate functions of work distribution functions. So we should report what
we can obtain by directly applying the Gärtner-Ellis theorem to our model under
the weak coupling condition (1.13). Let B(R) denote the Borel algebra of R. For
L ∈ N we define a function µL : B(R) → R by

µL(B) :=
bLd∑

n=−bLd

1 n

2bLd ∈BPL

(n
2

)
.

We see that µL is a probability measure on R. Moreover by (1.18) for any t ∈ R

∫
R
ebL

dtxdµL(x) =
bLd∑

n=−bLd

et
n
2PL

(n
2

)
=

bLd∑
n=−bLd

Trn e
−βH+tSz

Tr e−βH
=

Tr e−βH+tSz

Tr e−βH
.

One can follow the early derivation of the free energy density of the BCS model [2,
Chapter 3] to derive that

lim
L→∞
L∈N

1

Ld
log Tr e−βH+tSz(1.19)

= Dd

∫
Γ∗
∞

dk

(
Tr log

(
cosh

(
t

2

)
+ cosh(βE(k))

)
+ Tr log(2e−βE(k))

)
.

We should remark that since we assume (1.13), the corresponding gap equation

− 2

|U |
+Dd

∫
Γ∗
∞

dkTr

(
sinh(β

√
E(k)2 +∆2)

(cosh( t
2
) + cosh(β

√
E(k)2 +∆2))

√
E(k)2 +∆2

)
= 0

(1.20)

does not have a positive solution. Indeed

(the R.H.S of (1.20)) ≤ − 2

|U |
+Dd

∫
Γ∗
∞

dkTr

(
1√

E(k)2 +∆2

)
≤ − 2

|U |
+

b

emin

< 0
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for any ∆ ∈ R≥0. This is why the free energy density (1.19) is the same as that of
the non-interacting model. Therefore

lim
L→∞
L∈N

1

bLd
log

(∫
R
ebL

dtxdµL(x)

)
=
Dd

b

∫
Γ∗
∞

dkTr log

(
cosh( t

2
) + cosh(βE(k))

1 + cosh(βE(k))

)
,

(1.21)

which is real analytic with t in R. Let us define the function Λβ : R → R by the
right-hand side of (1.21). It follows from the Gärtner-Ellis theorem (see, e.g., [4])
that for any u, v ∈ [−1

2
, 1
2
] with u < v

lim
L→∞
L∈N

1

bLd
log

 bLd∑
n=−bLd

1 n

2bLd∈[u,v]PL

(n
2

) = lim
L→∞
L∈N

1

bLd
log µL([u, v])(1.22)

= − min
x∈[u,v]

r(x, β),

where the function r : R×R>0 → R ∪ {+∞} is the Legendre transform of Λβ, i.e.

r(x, β) := sup
t∈R

(xt− Λβ(t)).

In fact we can characterize the function r(·) as follows. For any β ∈ R>0

r(x, β) = r(−x, β), ∀x ∈ R,

r(x, β) = +∞, ∀x ∈
(
1

2
,∞
)
,

r

(
1

2
, β

)
=
Dd

b

∫
Γ∗
∞

dkTr log(2(1 + cosh(βE(k)))), r(0, β) = 0,

∂2r

∂x2
(x, β) > 0, ∀x ∈

(
−1

2
,
1

2

)
,

∂r

∂x
(x, β) < 0, ∀x ∈

(
−1

2
, 0

)
,
∂r

∂x
(0, β) = 0,

∂r

∂x
(x, β) > 0, ∀x ∈

(
0,

1

2

)
.

Moreover, (x, β) 7→ r(x, β) is real analytic in (−1
2
, 1
2
)×R>0, which means that the

rate function r(·, ·) does not exhibit any singular behavior with the temperature.
Despite that DQPTs are triggered by the weak BCS interaction, the interaction
plays no role in the rate function. Thus the simple application of the Gärtner-Ellis
theorem is unlikely to provide an interpretation of DQPT in terms of the work
distribution function.

2 Convexity of the phase boundary
In this section we prove Proposition 1.6. Let us begin by transforming d2τ

dβ2 (β) into
a form without derivatives of τ(·). Take any E ∈ E(emin, emax). Define the function
F : R>0 × (−1, 0) → R by

F (x, y) := Dd

∫
Γ∗
∞

dkTr

(
sinh(xE(k))

(y + cosh(xE(k)))E(k)

)
.(2.1)

Our proof is based on the following equality.
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Lemma 2.1. Let U ∈ [−2emin

b
, 0).

d2τ

dβ2
(β) = − 2y(β)

(1− y(β)2)
3
2

(
Fx(β, y(β))

Fy(β, y(β))

)2

(2.2)

+
2

(1− y(β)2)
1
2Fy(β, y(β))3

·
(
Fxx(β, y(β))Fy(β, y(β))

2 − 2Fx(β, y(β))Fy(β, y(β))Fxy(β, y(β))

+ Fyy(β, y(β))Fx(β, y(β))
2
)

for any β ∈ (0, βc), where y(β) := cos( τ(β)
2
), Fx(x, y) :=

∂F
∂x
(x, y) and other partial

derivatives of F are abbreviated similarly.

Proof. We can derive from the equality − 2
|U | + F (β, y(β)) = 0 that

dy

dβ
(β) = −Fx(β, y(β))

Fy(β, y(β))
.(2.3)

Because y 7→ F (x, y) : (−1, 0) → R is monotonic, Fy(β, y(β)) 6= 0 for any β ∈
(0, βc). By substituting (2.3)

dτ

dβ
(β) = −

2 dy
dβ
(β)

(1− y(β)2)
1
2

=
2

(1− y(β)2)
1
2

· Fx(β, y(β))

Fy(β, y(β))
.

By differentiating both sides with β and substituting (2.3) again we can obtain the
claimed equality.

In the rest of this paper we often let y(β) denote cos( τ(β)
2
) without any remark.

The next lemma means that for any emin, emax satisfying 0 < emin ≤ emax, β ∈
(0, βc) sufficiently close to βc d2τ

dβ2 (β) > 0.

Lemma 2.2. There exists M(emin, emax) ∈ R>0 depending only on emin, emax

such that for any U ∈ [− emin

sinh(2)b
, 0), E ∈ E(emin, emax), β ∈ (0, βc) satisfying

β ≥M(emin, emax)
√

1 + y(β)

d2τ

dβ2
(β) ≥ β2

4(1 + y(β))
3
2

(
emaxemin

sinh(2emax/emin)

)2

.

Since limβ↗βc y(β) = −1 by Lemma 1.2, we can deduce the following statement
from the above lemma.

Corollary 2.3. For any U ∈ [− emin

sinh(2)b
, 0), E ∈ E(emin, emax)

lim
β↗βc

d2τ

dβ2
(β) = +∞.

From time to time we will need explicit forms of the partial derivatives of F .
Let us list them here.

Fx(x, y) = Dd

∫
Γ∗
∞

dkTr

(
1 + y cosh(xE(k))

(y + cosh(xE(k)))2

)
,(2.4)
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Fy(x, y) = −Dd

∫
Γ∗
∞

dkTr

(
sinh(xE(k))

(y + cosh(xE(k)))2E(k)

)
,(2.5)

Fxx(x, y) = Dd

∫
Γ∗
∞

dkTr

(
E(k) sinh(xE(k))(y2 − y cosh(xE(k))− 2)

(y + cosh(xE(k)))3

)
,(2.6)

Fxy(x, y) = Dd

∫
Γ∗
∞

dkTr

(
cosh2(xE(k))− y cosh(xE(k))− 2

(y + cosh(xE(k)))3

)
,(2.7)

Fyy(x, y) = 2Dd

∫
Γ∗
∞

dkTr

(
sinh(xE(k))

(y + cosh(xE(k)))3E(k)

)
.(2.8)

We will use the following properties in the proof of Lemma 2.2. In fact these
were derived in the proof of [13, Proposition 2.8]. We show them again for readers’
convenience.

Lemma 2.4. Let U ∈ [− emin

sinh(2)b
, 0). Then the following inequalities hold.

βc ≤
2

emin

.

y(β) + 1 ≤ b sinh(2)|U |
2emin

, ∀β ∈ (0, βc).

− y(β) ≥ 1

2
, ∀β ∈ (0, βc).

Proof. By Lemma 1.1

βc ≤
2

emin

tanh−1

(
b|U |
2emin

)
≤ 2

emin

tanh−1

(
1

2 sinh(2)

)
≤ 2

emin

tanh−1(tanh(1))

=
2

emin

.

It follows from the above inequality, the equality − 2
|U | + F (β, y(β)) = 0 and the

property (1.17) that

2

|U |
≤ b sinh(βemin)

(y(β) + cosh(βemin))emin

≤ b sinh(2)

(y(β) + cosh(βemin))emin

,

or by the assumption

y(β) + 1 ≤ y(β) + cosh(βemin) ≤
b sinh(2)|U |

2emin

≤ 1

2
.

This implies the second and the third inequality.

Proof of Lemma 2.2. Let us establish necessary inequalities by assuming that β ≥
M
√

1 + y(β) with M ∈ R>0. We will tune M afterwards. It follows that

−y(β) ≥ 1− β2

M2
.(2.9)

By (2.4) and (2.9)

− Fx(β, y(β))
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≥ Dd

∫
Γ∗
∞

dkTr

(
(1− β2/M2) cosh(βE(k))− 1

(y(β) + cosh(βE(k)))2

)
≥
(
β2

2
e2min −

β2

M2
cosh(βemax)

)
Dd

∫
Γ∗
∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
≥ β2

(
1

2
e2min −

1

M2
cosh(βcemax)

)
Dd

∫
Γ∗
∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.

By (2.5)

0 < −Fy(β, y(β)) ≤
sinh(βemax)

emax

Dd

∫
Γ∗
∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.

Thus by assuming that

1

2
e2min −

1

M2
cosh(βcemax) > 0(2.10)

(
Fx(β, y(β))

Fy(β, y(β))

)2

≥ β2

(
βemax

sinh(βemax)

(
1

2
e2min −

1

M2
cosh(βcemax)

))2

(2.11)

≥ β2

(
βcemax

sinh(βcemax)

(
1

2
e2min −

1

M2
cosh(βcemax)

))2

.

To bound |Fxx(β, y(β))|, observe that since y(β) ∈ (−1, 0),

|y(β)2 − y(β) cosh(βα)− 2| = |(y(β)− 2)(y(β) + 1) + y(β)(1− cosh(βα))|
≤ 3(y(β) + 1) + cosh(βα)− 1 ≤ 3(y(β) + cosh(βα))

for any α ∈ R. Therefore

|Fxx(β, y(β))| ≤ 3Dd

∫
Γ∗
∞

dkTr

(
E(k) sinh(βE(k))

(y(β) + cosh(βE(k)))2

)
≤ 3e2max|Fy(β, y(β))|,

or ∣∣∣∣Fxx(β, y(β))

Fy(β, y(β))

∣∣∣∣ ≤ 3e2max.(2.12)

Moreover, since

|1 + y(β) cosh(βα)| = |1 + y(β) + y(β)(cosh(βα)− 1)| ≤ 1 + y(β) + cosh(βα)− 1
(2.13)

= y(β) + cosh(βα)

for any α ∈ R,

|Fx(β, y(β))| ≤ (y(β) + cosh(βemax))Dd

∫
Γ∗
∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.

(2.14)

Also,

|Fy(β, y(β))| ≥ βDd

∫
Γ∗
∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.(2.15)
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To bound |Fxy(β, y(β))|, we remark that for any α ∈ R

| cosh2(βα)− y(β) cosh(βα)− 2|
= |(cosh(βα)− 1)2 + 2(cosh(βα)− 1)− 1− y(β) cosh(βα)|
≤ |(cosh(βα)− 1)2 + 2(cosh(βα)− 1)|+ y(β) + cosh(βα)

≤ (cosh(βα) + y(β))(cosh(βα) + 2).

In the 1st inequality we used (2.13). Thus

|Fxy(β, y(β))| ≤ (cosh(βcemax) + 2)Dd

∫
Γ∗
∞

dkTr

(
1

(y(β) + cosh(βE(k)))2

)
.

(2.16)

By combining (2.14), (2.15), (2.16) with (2.9)

∣∣∣∣Fx(β, y(β))Fxy(β, y(β))

Fy(β, y(β))2

∣∣∣∣ ≤ β−2(y(β) + cosh(βemax))(cosh(βcemax) + 2)

(2.17)

≤ β−2

(
β2

M2
+ cosh(βemax)− 1

)
(cosh(βcemax) + 2)

≤
(

1

M2
+

cosh(βcemax)− 1

β2
c

)
(cosh(βcemax) + 2).

One can deduce that

|Fyy(β, y(β))| ≤
2

y(β) + cosh(βemin)
|Fy(β, y(β))|.(2.18)

It follows from (2.14), (2.15), (2.18) and (2.9) that

∣∣∣∣Fyy(β, y(β))Fx(β, y(β))
2

Fy(β, y(β))3

∣∣∣∣ ≤ 2

y(β) + cosh(βemin)

(
Fx(β, y(β))

Fy(β, y(β))

)2

(2.19)

≤ 2(y(β) + cosh(βemax))
2

β2(y(β) + cosh(βemin))
≤

2( β2

M2 + cosh(βemax)− 1)2

β2(cosh(βemin)− 1)

≤ 4

e2min

(
1

M2
+

cosh(βcemax)− 1

β2
c

)2

.

By substituting (2.11), (2.12), (2.17), (2.19) into the right-hand side of (2.2) we
have that

(1 + y(β))
3
2
d2τ

dβ2
(β)

≥ − 2y(β)

(1− y(β))
3
2

β2

(
βcemax

sinh(βcemax)

(
e2min

2
− 1

M2
cosh(βcemax)

))2

− 2β2√
1− y(β)M2

(
3e2max + 2

(
1

M2
+

cosh(βcemax)− 1

β2
c

)
(cosh(βcemax) + 2)

+
4

e2min

(
1

M2
+

cosh(βcemax)− 1

β2
c

)2
)
.
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Here we also used that

2(1 + y(β))√
1− y(β)

≤ 2β2√
1− y(β)M2

.

Then by assuming

e2min

2
− 1

M2
cosh

(
2emax

emin

)
> 0(2.20)

and substituting the inequalities claimed in Lemma 2.4

(1 + y(β))
3
2
d2τ

dβ2
(β)

(2.21)

≥ β2

2
√
2

(
2emax

emin sinh(2emax/emin)

(
e2min

2
− 1

M2
cosh

(
2emax

emin

)))2

− 2β2

M2

(
3e2max + 2

(
1

M2
+
e2min

4

(
cosh

(
2emax

emin

)
− 1

))(
cosh

(
2emax

emin

)
+ 2

)

+
4

e2min

(
1

M2
+
e2min

4

(
cosh

(
2emax

emin

)
− 1

))2
)
.

Note that (2.20) holds for sufficiently large M and implies (2.10). Moreover,
1
β2 (R.H.S of (2.21)) is independent of β and

lim
M→∞

1

β2
(R.H.S of (2.21)) = 1

2
√
2

(
emaxemin

sinh(2emax/emin)

)2

.

Thus we can choose M(emin, emax) ∈ R>0 depending only on emin, emax so that the
claim of the lemma holds.

The inequality β ≥M(emin, emax)
√

1 + y(β) does not hold for small β.

Lemma 2.5. For any E ∈ E(emin, emax), U ∈ (−2emin

b
, 0)

lim
β↘0

β√
1 + y(β)

= 0.

Proof. By (1.17)

β2

y(β) + cosh(βemax)
≤ βDd

∫
Γ∗
∞

dkTr

(
sinh(βE(k))

(y(β) + cosh(βE(k)))E(k)

)
=

2β

|U |
.

Thus

lim
β↘0

β2

y(β) + cosh(βemax)
= 0,

which implies the claim.
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Remark 2.6. In the proof of [13, Lemma 2.2] we proved more precisely that

lim
β↘0

y(β) + 1

β
=
b|U |
2

by a longer argument.

Therefore Lemma 2.2 does not prove the positivity of d2τ
dβ2 (β) for small β. We

must prove the positivity in case that β < M(emin, emax)
√

1 + y(β). In the rest
of this section we achieve this as follows. We show by scaling that the right-hand
side of (2.2) is close to a function independent of y(β), which proves to be positive
if emin

emax
>
√
9− 4

√
5.

Let us construct the proof step by step. For x ∈ R>0, y ∈ (−1, 0), E ∈
E(emin, emax) we set

WE(x, y) :=
2

(1− y)
3
2

(
(y + 1)

3
2Fy(

√
y + 1x, y)/x

)3
(

(2.22)

− y
(
(y + 1)Fx(

√
y + 1x, y)

)2 (y + 1)
3
2

x
Fy(
√
y + 1x, y)

+ (1− y)

(
2

(
x(y + 1)

3
2

2
Fxx(

√
y + 1x, y)

)(
(y + 1)

3
2

x
Fy(
√
y + 1x, y)

)2

− 2
(
(y + 1)Fx(

√
y + 1x, y)

)((y + 1)
3
2

x
Fy(
√
y + 1x, y)

)
·
(
(y + 1)2Fxy(

√
y + 1x, y)

)
+

(
(y + 1)

5
2

x
Fyy(

√
y + 1x, y)

)(
(y + 1)Fx(

√
y + 1x, y)

)2))
.

We can see from (2.2) that

β2√
1 + y(β)

d2τ

dβ2
(β) = WE

(
β√

1 + y(β)
, y(β)

)
, ∀β ∈ (0, βc).(2.23)

Since limx↘0 Fy(
√
y + 1x, y)/x converges to a non-zero value and

limx↘0 Fyy(
√
y + 1x, y)/x converges in particular, limx↘0WE(x, y) converges for

any y ∈ (−1, 0). Thus in the following we consider WE(·, ·) as a continuous function
on R≥0 × (−1, 0). For y ∈ (−1, 0) close to −1 WE(x, y) can be approximated by
W̃E(x) defined by

W̃E(x) :=
Dd

∫
Γ∗
∞
dkTr

(
1

1+x2

2
E(k)2

)
√
2
(
Dd

∫
Γ∗
∞
dkTr

(
1

(1+x2

2
E(k)2)2

))3
((2.24)

4

(
Dd

∫
Γ∗
∞

dkTr

(
1

(1 + x2

2
E(k)2)2

))2

+Dd

∫
Γ∗
∞

dkTr

(
1

1 + x2

2
E(k)2

)
Dd

∫
Γ∗
∞

dkTr

(
1

(1 + x2

2
E(k)2)2

)
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− 4Dd

∫
Γ∗
∞

dkTr

(
1

1 + x2

2
E(k)2

)
Dd

∫
Γ∗
∞

dkTr

(
1

(1 + x2

2
E(k)2)3

))
.

We can consider W̃E(·) as a continuous function on R≥0.

Lemma 2.7. For any r ∈ R>0

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

|WE(x, y)− W̃E(x)| = 0.

Proof. For E ∈ E(emin, emax) we define the functions F̃ (x), F̃ (y), F̃ (xx), F̃ (xy),
F̃ (yy)(∈ C(R≥0)) by

F̃ (x)(x) := Dd

∫
Γ∗
∞

dkTr

(
1− x2

2
E(k)2

(1 + x2

2
E(k)2)2

)
,

F̃ (y)(x) := −Dd

∫
Γ∗
∞

dkTr

(
1

(1 + x2

2
E(k)2)2

)
,

F̃ (xx)(x) := Dd

∫
Γ∗
∞

dkTr

(
x2

2
E(k)2(−3 + x2

2
E(k)2)

(1 + x2

2
E(k)2)3

)
,

F̃ (xy)(x) := Dd

∫
Γ∗
∞

dkTr

(
3
2
x2E(k)2 − 1

(1 + x2

2
E(k)2)3

)
,

F̃ (yy)(x) := Dd

∫
Γ∗
∞

dkTr

(
2

(1 + x2

2
E(k)2)3

)
.

By using (1.10), (1.11) we can prove that for any r ∈ R>0

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

|(y + 1)Fx(
√
y + 1x, y)− F̃ (x)(x)| = 0,

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

∣∣∣∣∣(y + 1)
3
2

x
Fy(
√
y + 1x, y)− F̃ (y)(x)

∣∣∣∣∣ = 0,

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

∣∣∣∣∣x(y + 1)
3
2

2
Fxx(

√
y + 1x, y)− F̃ (xx)(x)

∣∣∣∣∣ = 0,

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

|(y + 1)2Fxy(
√
y + 1x, y)− F̃ (xy)(x)| = 0,

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

∣∣∣∣∣(y + 1)
5
2

x
Fyy(

√
y + 1x, y)− F̃ (yy)(x)

∣∣∣∣∣ = 0.

Since

|F̃ (y)(x)| ≥ b

(1 + x2

2
e2max)

2

for any x ∈ R≥0 and E ∈ E(emin, emax), we can justify that for any r ∈ R>0

lim
y↘−1

sup
x∈[0,r]

E∈E(emin,emax)

|WE(x, y)− ŴE(x)| = 0,
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where

ŴE(x) :=

(2.25)

1√
2(F̃ (y)(x))3

(
(F̃ (x)(x))2F̃ (y)(x)

+ 2
(
2F̃ (xx)(x)(F̃ (y)(x))2 − 2F̃ (x)(x)F̃ (y)(x)F̃ (xy)(x) + F̃ (yy)(x)(F̃ (x)(x))2

))
.

By setting

F̃n := Dd

∫
Γ∗
∞

dkTr

(
1

(1 + x2

2
E(k)2)n

)
(n ∈ N)

we have that

F̃ (x)(x) = 2F̃2 − F̃1, F̃
(y)(x) = −F̃2, F̃

(xx)(x) = F̃1 − 5F̃2 + 4F̃3,

F̃ (xy)(x) = 3F̃2 − 4F̃3, F̃
(yy)(x) = 2F̃3.

By substituting these into the right-hand side of (2.25) we can derive that ŴE(x) =
W̃E(x) for x ∈ R≥0, which completes the proof.

Based on (2.23) and Lemma 2.7, we can partially achieve the goal.

Lemma 2.8. Let M(emin, emax) be the (emin, emax)-dependent constant introduced
in Lemma 2.2. Assume that

inf
x∈[0,M(emin,emax)]
E∈E(emin,emax)

W̃E(x) > 0.(2.26)

Then there exists U0 ∈ (0, emin

sinh(2)b
] such that for any U ∈ [−U0, 0), E ∈ E(emin, emax),

β ∈ (0, βc) satisfying β ≤M(emin, emax)
√

1 + y(β)

d2τ

dβ2
(β) ≥

√
1 + y(β)

2β2
W̃E

(
β√

1 + y(β)

)
.

Proof. By Lemma 2.7 and the assumption there exists y0 ∈ (−1, 0) such that for
any x ∈ [0,M(emin, emax)], y ∈ (−1, y0], E ∈ E(emin, emax)

WE(x, y) ≥
1

2
W̃E(x).(2.27)

By the 2nd inequality of Lemma 2.4 there exists U0 ∈ (0, emin

sinh(2)b
] such that for any

U ∈ [−U0, 0), E ∈ E(emin, emax), β ∈ (0, βc) y(β) ∈ (−1, y0]. Combination of this
property with (2.23), (2.27) ensures the claim.

It remains to prove (2.26). Observe that for E ∈ E(emin, emax), n ∈ N

Dd

∫
Γ∗
∞

dkTr

(
1 +

x2

2
E(k)2

)−n

= (2π)−d

∫
[0,2π]d

dk̂Tr

1 +
x2

2
E

(
d∑

j=1

k̂jv̂j

)2
−n
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= lim
N→∞

N−d

d∏
j=1

N−1∑
nj=0

Tr

1 +
x2

2
E

(
2π

N

d∑
j=1

njv̂j

)2
−n

.

Moreover for any N ∈ N there exist M ∈ N, (sj)Mj=1 ∈ RM
>0 satisfying

∑M
j=1 sj = 1,

(ej)
M
j=1 ∈ RM

>0 satisfying emin ≤ e1 < · · · < eM ≤ emax such that

N−d

d∏
j=1

N−1∑
nj=0

Tr

1 +
x2

2
E

(
2π

N

d∑
j=1

njv̂j

)2
−n

= b

M∑
j=1

sj

(
1 +

x2

2
e2j

)−n

.

For conciseness let us set

X :=
x2

2
,

S(M) :=

{
(sj)

M
j=1 ∈ RM

>0

∣∣∣∣∣
M∑
j=1

sj = 1

}
,

A(M) := {(Aj)
M
j=1 ∈ RM

>0 | e2min ≤ A1 < · · · < AM ≤ e2max}

for M ∈ N and

Cn :=
M∑
j=1

sj(1 +XAj)
−n

for n ∈ N, (sj)Mj=1 ∈ S(M), (Aj)
M
j=1 ∈ A(M). We do not indicate the dependency

of Cn on X, M , (sj)Mj=1, (Aj)
M
j=1 for simplicity. By the definition (2.24)

W̃E(x) ≥ inf
M∈N

inf
(sj)Mj=1∈S(M)

inf
(Aj)Mj=1∈A(M)

inf
X∈R≥0

C1√
2C3

2

(4C2
2 + C1C2 − 4C1C3)(2.28)

for any x ∈ R≥0, E ∈ E(emin, emax). Thus it suffices to prove that the right-hand
side of (2.28) is positive. In fact we can prove the following.

Lemma 2.9. Assume that emin

emax
≥
√
9− 4

√
5. Then there exists a positive constant

c independent of any parameter such that

inf
M∈N

inf
(sj)Mj=1∈S(M)

inf
(Aj)Mj=1∈A(M)

inf
X∈R≥0

C1

C3
2

(4C2
2 + C1C2 − 4C1C3)

≥ c

((
emin

emax

)2

− 9 + 4
√
5

)2

.

We need to construct tools to prove Lemma 2.9. To shorten subsequent formu-
las, let us set

Bi :=
1

1 + AiX
,(2.29)

Di,j :=
1

2
(8B2

iB
2
j +BiB

2
j +B2

iBj − 4BiB
3
j − 4B3

iBj)(2.30)
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for Ai, Aj ∈ R>0 and X ∈ R≥0. The following transformation of Di,j will be useful.
For any γ ∈ R

Di,j =

(2.31)

1

2
BiBj(2γ − (γ −Bi)− (γ −Bj)− 4(γ −Bi)

2 − 4(γ −Bj)
2 + 8(γ −Bi)(γ −Bj)).

Lemma 2.10. For any M ∈ N, (sj)Mj=1 ∈ S(M), (Aj)
M
j=1 ∈ A(M), X ∈ R≥0

4C2
2 + C1C2 − 4C1C3 = 〈(sj)Mj=1, (Di,j)1≤i,j≤M(sj)

M
j=1〉RM ,(2.32)

where 〈·, ·〉RM is the canonical inner product of RM .

Proof. Observe that

4C2
2 + C1C2 − 4C1C3

=
M∑
i=1

M∑
j=1

sisj(4B
2
iB

2
j +BiB

2
j − 4BiB

3
j )

=
M∑
i=1

s2iB
3
i +

M∑
i=1

M∑
j=1

(1i<j + 1i>j)sisj(4B
2
iB

2
j +BiB

2
j − 4BiB

3
j )

=
M∑
i=1

s2iB
3
i +

M∑
i=1

M∑
j=1

1i<jsisj2Di,j =
M∑
i=1

s2iDi,i +
M∑
i=1

M∑
j=1

1i 6=jsisjDi,j

= 〈(sj)Mj=1, (Di,j)1≤i,j≤M(sj)
M
j=1〉RM .

Let us prepare lemmas to find a lower bound on the right-hand side of (2.32).
We set for A1, A2 ∈ R>0

α(A1, A2) :=
A

1
3
1 + A

1
3
2

A
2
3
1A

2
3
2

.(2.33)

We begin with the next lemma from which the critical constant 9−4
√
5 originates.

Lemma 2.11. Assume that 0 < A1 < A2.

(i) The function X 7→ B
1
2
1 − B

1
2
2 : R≥0 → R attains its maximum only at X =

α(A1, A2). Moreover,

(B
1
2
1 −B

1
2
2 )|X=α(A1,A2) =

1− (A1/A2)
1
3√

1 + (A1/A2)
1
3 + (A1/A2)

2
3

.

(ii) The maximum value maxX∈R≥0
(B

1
2
1 −B

1
2
2 ) is strictly decreasing with A1

A2
.

(iii) maxX∈R≥0
(B

1
2
1 −B

1
2
2 ) =

1
2

if and only if A1

A2
= 9− 4

√
5.
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Proof. (i): One can derive that

d

dX
(B

1
2
1 −B

1
2
2 )

=
(A

1
3
2 − A

1
3
1 )(A

2
3
2 (1 + A1X) + A

1
3
1A

1
3
2 (1 + A1X)

1
2 (1 + A2X)

1
2 + A

2
3
1 (1 + A2X))

2(1 + A1X)
3
2 (1 + A2X)

3
2 (A

1
3
2 (1 + A1X)

1
2 + A

1
3
1 (1 + A2X)

1
2 )

· (A
1
3
1 + A

1
3
2 − A

2
3
1A

2
3
2X).

The claim follows from the above equality. The maximum value can be derived
directly.

(ii): One can deduce the claim from (i).
(iii): We can check that

1− (A1/A2)
1
3√

1 + (A1/A2)
1
3 + (A1/A2)

2
3

=
1

2

if and only if A1

A2
= 9− 4

√
5. Thus by (i) the claim holds true.

We need to prove properties of Bi, Di,j more.

Lemma 2.12. (i) For any A1, A2 ∈ R>0 satisfying A1 ≤ A2, X ∈ R≥0

D1,1 −D1,2 =
1

2
B1(B1 −B2)(2B1 +B2 + 4B2(B1 −B2)).

(ii) For any A1, A2 ∈ R>0 satisfying A1 ≤ A2, X ∈ R≥0

D1,1D2,2 −D2
1,2 =4B2

1B
2
2(B1 −B2)

2

(
B

1
2
1 +B

1
2
2 +

1

2

)(
B

1
2
1 −B

1
2
2 +

1

2

)
·
(
1

2
−B

1
2
1 +B

1
2
2

)(
B

1
2
1 +B

1
2
2 − 1

2

)
.

(iii) For any A1, A2, A3, A4 ∈ R>0 satisfying A1 < A2 ≤ A3 ≤ A4, X ∈ R>0

D1,1D2,3 −D1,2D1,3 ≥
B2B3(B1 −B2)(B1 −B3)

B2
4(B1 −B4)2

(D1,1D4,4 −D2
1,4).

(iv) Assume that 0 < A1 ≤ A2 and X ∈ R≥0.

D1,2 ≥ D2,2 if and only if B1 −B2 ≤
3B1

2(2B1 + 1)
.

(v) Assume that 0 < A1 < A2 and X ∈ R>0.

D1,2 ≤ D2,2 if and only if B1 −B2 ≥
3B1

2(2B1 + 1)
.

(vi) Let A1, A2, · · · , AM ∈ R>0 satisfy A1 ≤ A2 ≤ · · · ≤ AM and X ∈ R≥0. If
D1,M ≥ DM,M , then D1,m ≥ Dm,m ≥ DM,M for any m ∈ {1, 2, · · · ,M}.
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(vii) Let A1, A2 ∈ R>0 satisfy A1 ≤ A2, A1

A2
≥ 9−4

√
5 and X ∈ R≥0. If D2,2 ≥ D1,2,

there exists c ∈ R>0 independent of any parameter such that

D1,1D2,2 −D2
1,2 ≥ cB2

1B
2
2(B1 −B2)

2

(
A1

A2

− 9 + 4
√
5

)2

.

Proof. (i), (ii): These can be derived from the definitions. The equality (2.31) with
γ = B1 helps the derivations.

(iii): Observe that by using (2.31) with γ = B1 and the inequalities B1 > B2 ≥
B3 ≥ B4

D1,1D2,3 −D1,2D1,3

=
1

4
B2

1B2B3(B1 −B2)(B1 −B3)

· (−1 + 16B1 − 4(B1 −B2)− 4(B1 −B3)− 16(B1 −B2)(B1 −B3))

≥ 1

4
B2

1B2B3(B1 −B2)(B1 −B3)(−1 + 16B1 − 8(B1 −B4)− 16(B1 −B4)
2)

=
B2B3(B1 −B2)(B1 −B3)

B2
4(B1 −B4)2

(D1,1D4,4 −D2
1,4).

(iv): When A1 = A2 or X = 0, the claim is obvious. Assume that A1 < A2

and X > 0. Using (2.31) with γ = B1, we can see that D1,2 ≥ D2,2 if and only if
(B1 + 2B2)(B1 − B2) − 4B1(B1 − B2)

2 ≥ 0. Since B1 − B2 > 0, this is equivalent
to B1 + 2B2 − 4B1(B1 −B2) ≥ 0, or B1 −B2 ≤ 3B1

2(2B1+1)
.

(v): The proof is parallel to the proof of (iv).
(vi): By the assumption and (iv) B1 − BM ≤ 3B1

2(2B1+1)
, which implies that

B1 − Bm ≤ 3B1

2(2B1+1)
for any m ∈ {1, 2, · · · ,M}. Again by (iv) D1,m ≥ Dm,m ≥

DM,M for any m ∈ {1, 2, · · · ,M}.
(vii): The claim is trivial when A1 = A2 or X = 0. Let us assume that A1 < A2

and X > 0. By Lemma 2.11 (i)

1

2
− (B

1
2
1 −B

1
2
2 ) ≥

1

2
− (B

1
2
1 −B

1
2
2 )|X=α(A1,A2)

(2.34)

=
3((3 +

√
5)/2− (A1/A2)

1
3 )((A1/A2)

1
3 − (3−

√
5)/2)

2

√
1 + (A1/A2)

1
3 + (A1/A2)

2
3

(√
1 + (A1/A2)

1
3 + (A1/A2)

2
3 + 2(1− (A1/A2)

1
3 )
)

≥ c

((
A1

A2

) 1
3

− 3−
√
5

2

)

= c
A1/A2 − ((3−

√
5)/2)3

(A1/A2)
2
3 + ((3−

√
5)/2)(A1/A2)

1
3 + ((3−

√
5)/2)2

≥ c

(
A1

A2

− 9 + 4
√
5

)
.

On the other hand, by (v) 2(2B1 + 1)(B1 − B2) ≥ 3B1, which implies that 4B2
1 ≥

4B2
1 − 4B1B2 − 2B2 ≥ B1. Thus B1 ≥ 1

4
. Since the function x 7→ x

2x+1
: R≥0 → R

is increasing,

B1 −B2 ≥
3B1

2(2B1 + 1)
≥ 3x

2(2x+ 1)

∣∣∣∣
x= 1

4

=
1

4
.
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By combining this inequality with Lemma 2.11 (i)

1

4
≤ (B

1
2
1 −B

1
2
2 )(B

1
2
1 +B

1
2
2 ) ≤

1− (A1/A2)
1
3√

1 + (A1/A2)
1
3 + (A1/A2)

2
3

(B
1
2
1 +B

1
2
2 ).

Therefore

B
1
2
1 +B

1
2
2 − 1

2
≥

√
1 + (A1/A2)

1
3 + (A1/A2)

2
3

4(1− (A1/A2)
1
3 )

− 1

2

(2.35)

=
3((3 +

√
5)/2− (A1/A2)

1
3 )((A1/A2)

1
3 − (3−

√
5)/2)

4(1− (A1/A2)
1
3 )
(√

1 + (A1/A2)
1
3 + (A1/A2)

2
3 + 2(1− (A1/A2)

1
3 )
)

≥ c

((
A1

A2

) 1
3

− 3−
√
5

2

)
≥ c

(
A1

A2

− 9 + 4
√
5

)
.

By combining (2.34), (2.35) with the equality derived in (ii) we obtain the claimed
inequality.

We also need the following basic lemma.

Lemma 2.13. Let M ∈ N≥2, a = (aj)
M
j=1, b = (bj)

M
j=1 ∈ RM , a1 6= 0, b1 = 0,

bj > 0 (j = 2, · · · ,M). Then for any x = (xj)
M
j=1 ∈ RM

≥0 satisfying
∑M

j=1 xj = 1

〈a,x〉2RM + 〈b,x〉2RM ≥ min
j∈{2,3,··· ,M}

a21b
2
j

(aj − a1)2 + b2j
.

Proof. Let us define the function f : RM−1
≥0 → R by

f(x2, · · · , xM) :=

(
a1 +

M∑
j=2

(aj − a1)xj

)2

+

(
M∑
j=2

bjxj

)2

.

The function f attains its global minimum. Indeed f(0) = a21, f(x) ≥ a21 for any
x = (xj)

M
j=2 ∈ RM−1

≥0 satisfying
∑M

j=2 bjxj ≥ |a1|. Thus a global minimum point of
f(·) exists in the compact set{

(xj)
M
j=2 ∈ RM−1

≥0

∣∣∣∣∣
M∑
j=2

bjxj ≤ |a1|

}
.

Observe that for any x = (xj)
M
j=1 ∈ RM

≥0 satisfying
∑M

j=1 xj = 1

〈a,x〉2RM + 〈b,x〉2RM = f(x2, · · · , xM).

Thus it suffices to prove that for any M ∈ N≥2

min
x∈RM−1

≥0

f(x) ≥ min
j∈{2,3,··· ,M}

a21b
2
j

(aj − a1)2 + b2j
,

(Ineq(M))
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∀a = (aj)
M
j=1, b = (bj)

M
j=1 ∈ RM satisfying a1 6= 0, b1 = 0, bj > 0 (j = 2, · · · ,M).

Let us prove (Ineq(M)) by induction with M . If M = 2,

f(x2) = ((a2 − a1)
2 + b22)

(
x2 +

a1(a2 − a1)

(a2 − a1)2 + b22

)2

+
a21b

2
2

(a2 − a1)2 + b22

≥ a21b
2
2

(a2 − a1)2 + b22

for any x2 ∈ R≥0. Thus (Ineq(2)) holds. Assume that M ≥ 3 and (Ineq(M − 1))
holds. Let us consider the case that

aj − a1
bj

=
aM − a1
bM

, ∀j ∈ {2, 3, · · · ,M − 1}.

It follows that

f((xj)
M
j=2) =

(
a1 +

aM − a1
bM

M∑
j=2

bjxj

)2

+

(
M∑
j=2

bjxj

)2

≥ min
x∈R≥0

((a1 + (aM − a1)x)
2 + (bMx)

2) ≥ a21b
2
M

(aM − a1)2 + b2M
.

In the last inequality we used (Ineq(2)). Thus the claimed inequality holds in this
case. Next we consider the case that there exists l ∈ {2, 3, · · · ,M − 1} such that
al−a1

bl
6= aM−a1

bM
. Suppose that f(·) attains its minimum at (x̂j)

M
j=2 ∈ RM−1

>0 . Then
for m ∈ {l,M}

1

bm

∂f

∂xm
((x̂j)

M
j=2) = 2

am − a1
bm

(
a1 +

M∑
j=2

(aj − a1)x̂j

)
+ 2

M∑
j=2

bjx̂j = 0.

Since al−a1
bl

6= aM−a1
bM

,
∑M

j=2 bjx̂j = 0, which is impossible. Thus f(·) attains its
global minimum in RM−1

≥0 \RM−1
>0 . Using the induction hypothesis,

min
(xj)Mj=2∈R

M−1
≥0

f((xj)
M
j=2) = min

(xj)Mj=2∈R
M−1
≥0 \RM−1

>0

f((xj)
M
j=2)

= min
j∈{2,··· ,M}

min
(x2,··· ,xj−1,xj+1,··· ,xM )∈RM−2

≥0

f(x2, · · · , xj−1, 0, xj+1, · · · , xM)

≥ min
j∈{2,··· ,M}

min
k∈{2,3,··· ,M}\{j}

a21b
2
k

(ak − a1)2 + b2k
= min

j∈{2,··· ,M}

a21b
2
j

(aj − a1)2 + b2j
.

Thus the claimed inequality holds in this case, too. Thus (Ineq(M)) holds. By
induction (Ineq(M)) holds for any M ∈ N≥2, which completes the proof.

With these tools we can find a lower bound on the right-hand side of (2.32).

Lemma 2.14. Assume that emin

emax
≥
√
9− 4

√
5. Then there exists c ∈ R>0 inde-

pendent of any parameter such that

〈(sj)Mj=1, (Di,j)1≤i,j≤M(sj)
M
j=1〉RM ≥ cB3

M

(
A1

AM

− 9 + 4
√
5

)2

for any M ∈ N, (sj)Mj=1 ∈ S(M), (Aj)
M
j=1 ∈ A(M) and X ∈ R≥0.
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Proof. For M ∈ N, c ∈ R>0 we set the proposition

〈(sj)Mj=1, (Di,j)1≤i,j≤M(sj)
M
j=1〉RM ≥ cB3

M

(
A1

AM

− 9 + 4
√
5

)2

,(Prop(M, c))

∀(sj)Mj=1 ∈ S(M), (Aj)
M
j=1 ∈ A(M), X ∈ R≥0.

When M = 1,

〈(sj)Mj=1, (Di,j)1≤i,j≤M(sj)
M
j=1〉RM = D1,1 = B3

1 ≥ B3
M

(
A1

AM

− 9 + 4
√
5

)2

.

Thus (Prop(1, c)) holds for any c ∈ (0, 1]. Assume that M ≥ 2, c0 ∈ (0, 1] and
(Prop(M − 1, c0)) holds. We temporarily assume that A1

AM
> 9− 4

√
5 and X > 0.

First let us consider the case that D1,M ≥ DM,M . Lemma 2.12 (vi) ensures that
D1,m ≥ DM,M for any m ∈ {1, · · · ,M}. By using this inequality and the induction
hypothesis

〈(sj)Mj=1, (Di,j)1≤i,j≤M(sj)
M
j=1〉RM

≥ 〈(sj)Mj=1,

 DM,M · · · DM,M
... (Di,j)2≤i,j≤M

DM,M

 (sj)
M
j=1〉RM

= DM,M

(
s21 + 2

M∑
j=2

s1sj

)
+ 〈(sj)Mj=2, (Di,j)2≤i,j≤M(sj)

M
j=2〉RM−1

= DM,M

1−

(
M∑
j=2

sj

)2


+

(
M∑
j=2

sj

)2

〈 1∑M
j=2 sj

(sj)
M
j=2, (Di,j)2≤i,j≤M

1∑M
j=2 sj

(sj)
M
j=2〉RM−1

≥ B3
M

1−

(
M∑
j=2

sj

)2
+ c0B

3
M

(
A2

AM

− 9 + 4
√
5

)2
(

M∑
j=2

sj

)2

≥ c0B
3
M

(
A1

AM

− 9 + 4
√
5

)2

.

Next let us consider the case that D1,M < DM,M . In the following c1 denotes a
generic positive constant independent of any parameter. By using Lemma 2.12
(iii), (vii), Lemma 2.13 and Lemma 2.12 (i) in this order

〈(sj)Mj=1, (Di,j)1≤i,j≤M(sj)
M
j=1〉RM

= D1,1s
2
1 + 2

M∑
j=2

D1,jsjs1 + 〈(sj)Mj=2, (Di,j)2≤i,j≤M(sj)
M
j=2〉RM−1

= D1,1s
2
1 + 2

M∑
j=2

D1,jsjs1 +
M∑
j=2

Dj,js
2
j + 2

M∑
l=2

M∑
m=2

1l<mDl,mslsm

=
1

D1,1

((
M∑
j=1

D1,jsj

)2

+
M∑
j=2

(D1,1Dj,j −D2
1,j)s

2
j
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+ 2
M∑
l=2

M∑
m=2

1l<m(D1,1Dl,m −D1,lD1,m)slsm

)

≥ 1

D1,1

((
M∑
j=1

D1,jsj

)2

+
M∑
j=2

B2
j (B1 −Bj)

2

B2
M(B1 −BM)2

(D1,1DM,M −D2
1,M)s2j

+ 2
M∑
l=2

M∑
m=2

1l<m
BlBm(B1 −Bl)(B1 −Bm)

B2
M(B1 −BM)2

(D1,1DM,M −D2
1,M)slsm

)

≥ c1
D1,1

((
M∑
j=1

D1,jsj

)2

+
M∑
j=2

B2
1B

2
j (B1 −Bj)

2

(
A1

AM

− 9 + 4
√
5

)2

s2j

+ 2
M∑
l=2

M∑
m=2

1l<mB
2
1BlBm(B1 −Bl)(B1 −Bm)

(
A1

AM

− 9 + 4
√
5

)2

slsm

)

=
c1
D1,1

(
〈(D1,j)

M
j=1, (sj)

M
j=1〉

2
RM

+ 〈
(
B1Bj(B1 −Bj)

(
A1

AM

− 9 + 4
√
5

))M

j=2

, (sj)
M
j=2〉

2
RM−1

)

≥ c1
D1,1

min
j∈{2,··· ,M}

D2
1,1B

2
1B

2
j (B1 −Bj)

2(A1/AM − 9 + 4
√
5)2

(D1,1 −D1,j)2 +B2
1B

2
j (B1 −Bj)2(A1/AM − 9 + 4

√
5)2

≥ c1 min
j∈{2,··· ,M}

D1,1B
2
1B

2
j (B1 −Bj)

2(A1/AM − 9 + 4
√
5)2

B4
1(B1 −Bj)2 +B2

1B
2
j (B1 −Bj)2(A1/AM − 9 + 4

√
5)2

≥ c1B
3
M

(
A1

AM

− 9 + 4
√
5

)2

.

Here we remark that we used the assumptions A1

AM
> 9− 4

√
5 and X > 0 to apply

Lemma 2.12 (iii), Lemma 2.13. Thus

〈(sj)Mj=1, (Di,j)1≤i,j≤M(sj)
M
j=1〉RM ≥ min{c0, c1}B3

M

(
A1

AM

− 9 + 4
√
5

)2

for any (sj)
M
j=1 ∈ S(M), (Aj)

M
j=1 ∈ A(M) satisfying A1

AM
> 9 − 4

√
5 and X ∈ R>0.

Since the both sides of the above inequality are continuous with A1, AM , X,
(Prop(M, min{c0, c1})) holds by taking the limit. It follows that if (Prop(M −
1,min{1, c1})) holds, then (Prop(M,min{1, c1})) holds. By induction with M
(Prop(M,min{1, c1})) holds for any M ∈ N. The proof is complete.

We are ready to prove Lemma 2.9.

Proof of Lemma 2.9. By Lemma 2.10 and Lemma 2.14

C1

C3
2

(4C2
2 + C1C2 − 4C1C3) ≥ c

C1

C3
2

B3
M

(
A1

AM

− 9 + 4
√
5

)2

≥ c
B4

M

B6
1

((
emin

emax

)2

− 9 + 4
√
5

)2
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≥ c inf
X∈R≥0

(
1 + A1X

1 + AMX

)6
((

emin

emax

)2

− 9 + 4
√
5

)2

= c

(
A1

AM

)6
((

emin

emax

)2

− 9 + 4
√
5

)2

≥ c(9− 4
√
5)6

((
emin

emax

)2

− 9 + 4
√
5

)2

.

Here we can prove the positivity of d2τ
dβ2 (β) for small β as follows.

Lemma 2.15. Assume that emin

emax
>
√

9− 4
√
5. Let M(emin, emax) ∈ R>0 be that

introduced in Lemma 2.2. Then there exist c ∈ R>0 independent of any parameter
and U0 ∈ (0, emin

sinh(2)b
] such that for any U ∈ [−U0, 0), E ∈ E(emin, emax), β ∈ (0, βc)

satisfying β ≤M(emin, emax)
√

1 + y(β)

d2τ

dβ2
(β) ≥ c

√
1 + y(β)

β2

((
emin

emax

)2

− 9 + 4
√
5

)2

.

Proof. Combination of Lemma 2.8, (2.28) and Lemma 2.9 yields the result. Here
we remark that the condition emin

emax
>
√

9− 4
√
5 is necessary to ensure that (2.26)

holds.

Lemma 2.5 and Lemma 2.15 imply the following.

Corollary 2.16. Assume that emin

emax
>
√
9− 4

√
5. Then there exists U0 ∈ (0, emin

sinh(2)b
]

such that for any U ∈ [−U0, 0) and E ∈ E(emin, emax)

lim
β↘0

d2τ

dβ2
(β) = +∞.

Finally we achieve the goal of this section.

Proof of Proposition 1.6. The claim follows from Lemma 2.2, Corollary 2.3, Lemma
2.15 and Corollary 2.16.

3 Non-convexity of the phase boundary: non-
critical case

In this section we prove Proposition 1.7. Our proof is based on the relation (2.23)
and Lemma 2.7. It is essential to find E ∈ E(emin, emax) such that the function
W̃E(·) takes a negative value. We begin by constructing basic properties which
we need to analyze the function W̃E(·). Let us recall the notations (2.29), (2.30),
(2.33). Here we add more properties of Di,j.

Lemma 3.1. Let A1, A2 ∈ R>0 satisfy A1 ≤ A2.

(i) Assume that A1

A2
≤ 9− 4

√
5. Then D1,2|X=α(A1,A2) < 0.

(ii) Assume that A1

A2
< 9− 4

√
5. Then

(D1,1D2,2 −D2
1,2)|X=α(A1,A2) < 0.
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(iii) Assume that A1

A2
< 9− 4

√
5. Set

s1 :=
|D1,2|

D1,1 + |D1,2|

∣∣∣∣
X=α(A1,A2)

, s2 :=
D1,1

D1,1 + |D1,2|

∣∣∣∣
X=α(A1,A2)

.

Then s1, s2 ∈ (0, 1), s1 + s2 = 1 and

〈(sj)2j=1, (Di,j)1≤i,j≤2|X=α(A1,A2)(sj)
2
j=1〉R2 < 0.

Proof. (i): By the assumption Lemma 2.11 implies that

(B
1
2
1 −B

1
2
2 )|X=α(A1,A2) = max

X∈R≥0

(B
1
2
1 −B

1
2
2 ) ≥

1

2
.

We can deduce from (2.31) for D1,2, γ = B2 that D1,2 < 0 if and only if B1 >

B2 +
1
8
(1 +

√
1 + 32B2). If B

1
2
1 −B

1
2
2 ≥ 1

2
,

B1 ≥ B2 +B
1
2
2 +

1

4
> B2 +

1

8
(1 +

√
1 + 32B2),

and thus the claim holds.
(ii): By the assumption and Lemma 2.11 1

2
− (B

1
2
1 − B

1
2
2 )|X=α(A1,A2) < 0, and

thus B
1
2
1 |X=α(A1,A2) >

1
2
. By combining these inequalities with Lemma 2.12 (ii) we

can derive the claimed inequality.
(iii): By (i) s1, s2 ∈ (0, 1) and s1 + s2 = 1. Observe that

〈(sj)2j=1, (Di,j)1≤i,j≤2|X=α(A1,A2)(sj)
2
j=1〉R2(3.1)

=
1

D1,1

(D1,1s1 +D1,2s2)
2

∣∣∣∣
X=α(A1,A2)

+
s22
D1,1

(D1,1D2,2 −D2
1,2)

∣∣∣∣
X=α(A1,A2)

.

By (i) and the definition of s1, s2 the 1st term of the right-hand side of (3.1)
vanishes. By (ii) the 2nd term of the right-hand side of (3.1) is negative, which
concludes the proof.

We will use the next lemma in the proof of Proposition 1.7.

Lemma 3.2. Set

x0 :=

√√√√2
e

2
3
min + e

2
3
max

e
4
3
mine

4
3
max

.(3.2)

For any E ∈ E(emin, emax) there exists U0 ∈ (0, 2emin

b
) such that the follow-

ing statement holds. For any U ∈ [−U0, 0) there exists Y ∈ (−1, 0) such that√
1 + Y x0 ∈ (0, βc) and y(

√
1 + Y x0) = Y , where y(β) := cos( τ(β)

2
) for β ∈ (0, βc).

Proof. According to Lemma 1.1,

βc ≤
2

emin

tanh−1

(
b|U |
2emin

)
, ∀U ∈

(
−2emin

b
, 0

)
.

Thus there exists U0 ∈ (0, 2emin

b
) such that βc < x0 for any U ∈ [−U0, 0). Fix

U ∈ [−U0, 0). Since limβ↗βc

√
1 + y(β)/β = 0 by Lemma 1.2 (ii), there exists

36



η ∈ R>0 such that
√

1 + y(β) ≤ β
x0

for any β ∈ [βc − η, βc). Since βc < x0, there
exists Ỹ ∈ (−1, 0) such that

√
1 + Ỹ x0 ∈ [βc − η, βc). It follows that√

1 + y
(√

1 + Ỹ x0
)
≤
√

1 + Ỹ x0
x0

=
√
1 + Ỹ ,

or

y
(√

1 + Ỹ x0
)
≤ Ỹ .(3.3)

On the other hand, by Lemma 2.5 limβ↘0 β
2/(1+y(β)) = 0. Thus limY↘−1(1+

Y )/(1 + y(
√
1 + Y x0)) = 0. Therefore there exists Ŷ ∈ (−1, Ỹ ) such that 1 + Ŷ <

1 + y(
√

1 + Ŷ x0) or

Ŷ < y
(√

1 + Ŷ x0
)
.(3.4)

By (3.3), (3.4) and the continuity of y(·) there exists Y ∈ (Ŷ , Ỹ ] such that√
1 + Y x0 ∈ (0, βc) and Y = y(

√
1 + Y x0).

We need to construct E ∈ E(emin, emax) for which τ(·) is non-convex. As men-
tioned at the beginning of the section, we must show that W̃E(·) takes a negative
value. We achieve this as follows. First we find a matrix-valued discontinuous
function E∞ : Γ∗

∞ → Mat(b,C) such that W̃E∞(·) takes a negative value. Then we
approximate E∞ by some E ∈ E(emin, emax) so that W̃E(·) has the desired property.

Remark 3.3. One question we expect here is why we do not try to establish the
same theorem without assuming the smoothness of one-particle Hamiltonian ma-
trix E if such an example is found in a non-smooth class. This is because we cannot
justify the derivation of our gap equation if we allow one-particle Hamiltonian ma-
trix to be discontinuous. Polynomial decay property of the free propagator with the
spatial variables, which is guaranteed by smoothness of one-particle Hamiltonian
matrix with the momentum variables, is essential in the derivation of the infinite-
volume limit [13, Theorem 1.3] via multi-scale analysis. However, it is possible to
reduce the smoothness condition to some continuous differentiability condition to
derive the infinite-volume limit as claimed in [13, Theorem 1.3]. We assume the
smoothness condition throughout for simplicity.

In the following until the proof of Proposition 1.7 we assume that emin

emax
≤√

9− 4
√
5. Similarly to the definition in Lemma 3.1 (iii), we set

s1 :=
|D1,2|

D1,1 + |D1,2|

∣∣∣∣
A1=e2

min
,A2=e2max,

X=α(A1,A2)

, s2 := 1− s1.(3.5)

By Lemma 3.1 (i) s1, s2 ∈ (0, 1). Let us define the function Φ∞ : Rd → R by

Φ∞(x1, · · · , xd) :=

{
emax if |xj − π| < πs

1
d
2 for all j ∈ {1, · · · , d},

emin otherwise.

Then we define E∞ : Γ∗
∞ → Mat(b,C) by E∞(k) := Φ∞((v̂1, · · · , v̂d)

−1k)Ib. Ob-
serve that for any continuous function f : R\{0} → C

Dd

∫
Γ∗
∞

dkTr f(E∞(k)) = b(s1f(emin) + s2f(emax)).(3.6)
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In the following we construct {Ep}p∈R>0 ⊂ E(emin, emax) such that Ep approximates
E∞ as p→ ∞. Define the function φp ∈ C∞(R) (p ∈ R>0) by

φp(x) :=

 exp
(

1

(πs
1/d
2 )−2p((x−π)2)p−1

+ 1

)
if |x− π| < πs

1
d
2 ,

0 otherwise.

Then we define Φp ∈ C∞(Rd) (p ∈ R>0) by

Φp(x1, · · · , xd) := (emax − emin)
d∏

j=1

φp(xj) + emin.

Then we define Êp : Γ∗
∞ → Mat(b,C) by Êp(k) := Φp((v̂1, · · · , v̂d)

−1k)Ib. Fi-
nally we define Ep : Rd → Mat(b,C) (p ∈ R>0) by Ep(k) := Êp(k̂), where
k̂ ∈ {(v̂1, · · · , v̂d)k̃ | k̃ ∈ [0, 2π)d} and k = k̂+

∑d
j=1 2πmjv̂j for some (mj)

d
j=1 ∈ Zd.

Lemma 3.4. The following statements hold true.
(i) {Ep}p∈R>0 ⊂ E(emin, emax).

(ii) For any continuous function f : R\{0} → C

lim
p→∞

Dd

∫
Γ∗
∞

dkTr f(Ep(k)) = Dd

∫
Γ∗
∞

dkTr f(E∞(k)).

Remark 3.5. We have already proved similar lemmas [13, Lemma A.1], [14,
Lemma 2.9]. Though the previously constructed families of E(emin, emax) are differ-
ent from {Ep}p∈R>0 , these lemmas are essentially applicable to prove Proposition
1.7 and Proposition 1.8. We present Lemma 3.4 in the belief that the construction
of {Ep}p∈R>0 is simpler and more suited for our present purposes. Also, containing
all the necessary lemmas must be convenient for the readers.
Proof of Lemma 3.4. (i): We only check the property (1.9), as the other properties
apparently hold. Take any k ∈ Rd. There exist (k̃j)

d
j=1 ∈ [0, 2π)d, (mj)

d
j=1 ∈ Zd

such that k =
∑d

j=1 k̃jv̂j +
∑d

j=1 2πmjv̂j. Observe that

Ep(−k) = Ep

(
d∑

j=1

(2π − k̃j)v̂j

)
= Φp(2π − k̃1, · · · , 2π − k̃d)Ib = Φp(k̃1, · · · , k̃d)Ib

= Ep(k).

Here we used that φp(2π − k) = φp(k) for any k ∈ R. Therefore (1.9) is satisfied.
(ii): Let f : R\{0} → C be a continuous function. For any k ∈ Γ∗

∞ there
exists (k̃j)

d
j=1 ∈ [0, 2π]d such that k =

∑d
j=1 k̃jv̂j. Since limp→∞Φp(k̃1, · · · , k̃d) =

Φ∞(k̃1, · · · , k̃d),

lim
p→∞

Tr f(Ep(k)) = b lim
p→∞

f(Φp(k̃1, · · · , k̃d)) = bf(Φ∞(k̃1, · · · , k̃d))(3.7)

= Tr f(E∞(k)).

Also

|Tr f(Ep(k))| ≤ b sup
x∈[emin,emax]

|f(x)|(3.8)

for any p ∈ R>0. By (3.7), (3.8) one can apply the dominated convergence theorem
in L1(Γ∗

∞) to ensure the claimed convergence.
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Here we can prove Proposition 1.7.

Proof of Proposition 1.7. Assume that emin

emax
<
√

9− 4
√
5. We define {Ep}p∈R>0 ⊂

E(emin, emax), E∞ : Γ∗
∞ → Mat(b,C) as we did in front of Lemma 3.4. Though we

originally defined the function W̃E(·) for E ∈ E(emin, emax), we can define W̃E∞(·)
by replacing E by E∞ in (2.24). Recalling the notational rule given in front of
Lemma 2.9 and (3.6), we see that with A1 := e2min, A2 := e2max, M = 2

W̃E∞(x) =
C1√
2C3

2

(4C2
2 + C1C2 − 4C1C3).

Moreover by Lemma 2.10

W̃E∞(x) =
C1√
2C3

2

〈(sj)2j=1, (Di,j)1≤i,j≤2(sj)
2
j=1〉R2 .

We define x0 by (3.2). Since X =
x2
0

2
= α(A1, A2) and A1

A2
< 9 − 4

√
5, Lemma 3.1

(iii) guarantees that

W̃E∞(x0) < 0.(3.9)

We can apply Lemma 3.4 (ii) to deduce from (3.9) that there exists p ∈ R>0 such
that W̃Ep(x0) < 0. Moreover, by Lemma 2.7 there exists y0 ∈ (−1, 0) such that

WEp(x0, y) < 0, ∀y ∈ (−1, y0].(3.10)

By the 2nd inequality of Lemma 2.4 for Ep there exists U0 ∈ (0, 2emin

b
) such that

y(β) ∈ (−1, y0] for all U ∈ [−U0, 0), β ∈ (0, βc). Lemma 3.2 ensures that by taking
U0 smaller if necessary for any U ∈ [−U0, 0) there exists Y ∈ (−1, 0) such that√
1 + Y x0 ∈ (0, βc) and y(

√
1 + Y x0) = Y ∈ (−1, y0]. Set β′ :=

√
1 + Y x0. It

follows that y(β′) ∈ (−1, y0] and

WEp(x0, Y ) = WEp

(
β′

√
1 + Y

, Y

)
= WEp

(
β′√

1 + y(β′)
, y(β′)

)
.

Thus by (3.10)

WEp

(
β′√

1 + y(β′)
, y(β′)

)
< 0,

which combined with (2.23) implies that d2τ
dβ2 (β

′) < 0. This concludes the proof.

4 Non-convexity of the phase boundary: critical
case

In this section we prove Proposition 1.8. We assume that emin

emax
=
√

9− 4
√
5

throughout this section. We want to show non-convexity of τ(·), which is the same
goal as in Section 3. However, there is an essential difference from the previous
construction. In the present case by (2.28) and Lemma 2.9 W̃E(x) is non-negative
for any x ∈ R≥0, E ∈ E(emin, emax). This means that the same argument as in
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Section 3 does not lead to the claimed result. Interestingly it will turn out that
WE∞(x0, y) < 0 for y ∈ (−1, 0) sufficiently close to −1. Based on this property and
(2.23), we can choose E ∈ E(emin, emax) so that τ(·) is non-convex. The proof of
the negativity of WE∞(x0, y) is the most technical part in this paper. It requires
exact computation of the limit

lim
y↘−1

∂jWE∞

∂yj
(x0, y)

for j = 0, 1, 2. We will perform the computation separately in Subsection 4.2.

4.1 Proof of the proposition
Let the family {Ep}p∈R>0 ⊂ E(emin, emax) and E∞ : Γ∗

∞ → Mat(b,C) be those
constructed in front of Lemma 3.4. We have to prove in advance that various objects
depending on Ep converge as p→ ∞. Let the functions F p, F∞ : R>0×(−1, 0) → R
be defined by (2.1) with E = Ep, E∞ respectively. The equality (3.6) ensures the
well-definedness of F∞. We define WE∞ : R>0 × (−1, 0) → R by (2.22) with
E = E∞. It is well-defined despite that E∞ /∈ E(emin, emax). First we prove that
WEp converges to WE∞ .

Lemma 4.1. For any closed bounded intervals J ⊂ R>0, K ⊂ (−1, 0)

lim
p→∞

sup
x∈J
y∈K

|WEp(x, y)−WE∞(x, y)| = 0.

Proof. Let F p
a , F∞

a (a = x, y, xx, xy, yy) denote partial derivatives of the functions
F p, F∞. Recalling the explicit forms (2.4), (2.5), (2.6), (2.7), (2.8), we can apply
the dominated convergence theorem in L1(Γ∗

∞) to prove that

lim
p→∞

sup
x∈J
y∈K

|F p
a (
√
y + 1x, y)− F∞

a (
√
y + 1x, y)| = 0

for a = x, y, xx, xy, yy, which implies the claimed convergence property.

We can define the function gE∞ : R>0 × R × R → R by (1.12) with E = E∞.
For Ep ∈ E(emin, emax) (p ∈ R>0) we write βc(p), τ(β, p) in place of βc, τ(β) in
order to indicate the dependency on the parameter p. The following lemma shows
convergent properties of βc(p), τ(β, p) as p→ ∞.

Lemma 4.2. Assume that U ∈ (−2emin

b
, 0). Then the following statements hold.

(i) There uniquely exists

βc,∞ ∈
(
0,

2

emin

tanh−1

(
b|U |
2emin

)]
such that gE∞(βc,∞, 2π, 0) = 0. Moreover limp→∞ βc(p) = βc,∞.

(ii) For any β ∈ (0, βc,∞) there uniquely exists τ∞(β) ∈ (π, 2π) such that gE∞

(β, τ∞(β), 0) = 0. Moreover the function β 7→ τ∞(β) : (0, βc,∞) → R is real
analytic and

lim
p→∞

τ(β, p) = τ∞(β), ∀β ∈ (0, βc,∞),(4.1)
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lim
β↘0

β√
1 + cos(τ∞(β)/2)

= 0,(4.2)

lim
β↗βc,∞

τ∞(β) = 2π.(4.3)

Remark 4.3. By (i) for any β ∈ (0, βc,∞) there exists p0 ∈ R>0 such that β ∈
(0, βc(p)) for any p ≥ p0. In (ii) we consider limp→∞ τ(β, p) as limp→∞,p≥p0 τ(β, p).

Proof of Lemma 4.2. (i): The unique existence of βc,∞ satisfying the claimed prop-
erties except for the convergent property is proved by the same argument as the
proof of Lemma 1.1. To prove the convergent property, suppose that limsupp→∞
βc(p) > βc,∞. There exists ε ∈ R>0 such that for any p1 ∈ R>0 supp≥p1 βc(p) ≥
βc,∞ + ε. Take any p1 ∈ R>0. There exists q ∈ [p1,∞) such that βc(q) ≥ βc,∞ + ε

2
.

It follows that

0 = gEq(βc(q), 2π, 0) = − 2

|U |
+Dd

∫
Γ∗
∞

dkTr

(
1

tanh(βc(q)
2
Eq(k))Eq(k)

)

≤ − 2

|U |
+Dd

∫
Γ∗
∞

dkTr

(
1

tanh(βc,∞+ε/2

2
Eq(k))Eq(k)

)

≤ − 2

|U |
+ sup

p≥p1

Dd

∫
Γ∗
∞

dkTr

(
1

tanh(βc,∞+ε/2

2
Ep(k))Ep(k)

)
.

By Lemma 3.4 (ii)

0 ≤ − 2

|U |
+ limsup

p→∞
Dd

∫
Γ∗
∞

dkTr

(
1

tanh(βc,∞+ε/2

2
Ep(k))Ep(k)

)

= − 2

|U |
+Dd

∫
Γ∗
∞

dkTr

(
1

tanh(βc,∞+ε/2

2
E∞(k))E∞(k)

)

< − 2

|U |
+Dd

∫
Γ∗
∞

dkTr

(
1

tanh(βc,∞
2
E∞(k))E∞(k)

)
= gE∞(βc,∞, 2π, 0) = 0,

which is a contradiction. Thus limsupp→∞ βc(p) ≤ βc,∞. Suppose that liminfp→∞
βc(p) < βc,∞. There exists ε′ ∈ R>0 such that for any p2 ∈ R>0 infp≥p2 βc(p) ≤
βc,∞−ε′. Take any p2 ∈ R>0. There exists q′ ∈ [p2,∞) such that βc(q′) ≤ βc,∞− ε′

2
.

Observe that

0 = gEq′
(βc(q

′), 2π, 0) ≥ gEq′

(
βc,∞ − ε′

2
, 2π, 0

)
≥ inf

p≥p2
gEp

(
βc,∞ − ε′

2
, 2π, 0

)
.

Lemma 3.4 (ii) ensures that

0 ≥ liminf
p→∞

gEp

(
βc,∞ − ε′

2
, 2π, 0

)
= gE∞

(
βc,∞ − ε′

2
, 2π, 0

)
> gE∞(βc,∞, 2π, 0) = 0,

which is again a contradiction. Therefore liminfp→∞ βc(p) ≥ βc,∞. Summing up, we
obtain that limsupp→∞ βc(p) ≤ βc,∞ ≤ liminfp→∞ βc(p), which implies the claimed
convergence.
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(ii): The same argument as the proof of Lemma 1.1 (iii) shows the unique
existence of τ∞(β) ∈ (π, 2π). Since (β, t) 7→ gE∞(β, t, 0) : R>0 × R → R is real
analytic and ∂gE∞

∂t
(β, τ∞(β), 0) 6= 0 for all β ∈ (0, βc,∞), the real analytic implicit

function theorem (e.g. [15, Theorem 2.3.5]) ensures that τ∞(·) is real analytic in
(0, βc,∞). Take any β ∈ (0, βc,∞). Since limp→∞ βc(p) = βc,∞, there exists p3 ∈ R>0

such that β ∈ (0, βc(p)) for any p ≥ p3. Let us set

y(β, p) := cos

(
τ(β, p)

2

)
(p ≥ p3), y∞(β) := cos

(
τ∞(β)

2

)
for simplicity. Suppose that limsupp→∞ y(β, p) > y∞(β). There exists ε̂ ∈ R>0

such that supp≥p4 y(β, p) ≥ y∞(β) + ε̂ for any p4 ∈ [p3,∞). Take any p4 ∈ [p3,∞).
There exists q̂ ∈ [p4,∞) such that y(β, q̂) ≥ y∞(β) + ε̂

2
. It follows that

0 = gEq̂
(β, τ(β, q̂), 0) ≤ − 2

|U |
+ F q̂

(
β, y∞(β) +

ε̂

2

)
≤ − 2

|U |
+ sup

p≥p4

F p

(
β, y∞(β) +

ε̂

2

)
.

By arbitrariness of p4 and Lemma 3.4 (ii)

0 ≤ − 2

|U |
+ limsup

p→∞
F p

(
β, y∞(β) +

ε̂

2

)
= − 2

|U |
+ F∞

(
β, y∞(β) +

ε̂

2

)
< gE∞(β, τ∞(β), 0) = 0,

which is a contradiction. Thus limsupp→∞ y(β, p) ≤ y∞(β). Suppose that liminfp→∞
y(β, p) < y∞(β). There exists ε̃ ∈ R>0 such that infp≥p5 y(β, p) ≤ y∞(β) − ε̃ for
any p5 ∈ [p3,∞). Take any p5 ∈ [p3,∞). There exists q̃ ∈ [p5,∞) such that
y(β, q̃) ≤ y∞(β)− ε̃

2
. Observe that

0 = gEq̃
(β, τ(β, q̃), 0) ≥ − 2

|U |
+ F q̃

(
β, y∞(β)− ε̃

2

)
≥ − 2

|U |
+ inf

p≥p5
F p

(
β, y∞(β)− ε̃

2

)
.

Since p5 is arbitrary, Lemma 3.4 (ii) ensures that

0 ≥ − 2

|U |
+ liminf

p→∞
F p

(
β, y∞(β)− ε̃

2

)
= − 2

|U |
+ F∞

(
β, y∞(β)− ε̃

2

)
> gE∞(β, τ∞(β), 0) = 0,

which is again a contradiction. Thus liminfp→∞ y(β, p) ≥ y∞(β). We obtained that

limsup
p→∞

y(β, p) ≤ y∞(β) ≤ liminf
p→∞

y(β, p),

which implies that limp→∞ y(β, p) = y∞(β). Thus (4.1) holds.
The property (4.2) can be proved by exactly the same argument as the proof

of Lemma 2.5. The property (4.3) can be shown in the same way as [13, Lemma
2.2 (ii)]. However, we provide the proof of (4.3) for completeness. Suppose that
liminfβ↗βc,∞ τ∞(β) < 2π. Then there exists ε0 ∈ R>0 such that for any β̃ ∈ (0, βc,∞)
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infβ∈[β̃,βc,∞) τ∞(β) ≤ 2π − ε0. Take any β̃ ∈ (0, βc,∞). There exists β′ ∈ [β̃, βc,∞)

such that τ∞(β′) ≤ 2π − ε0
2

, which implies that

0 = gE∞(β′, τ∞(β′), 0) ≤ gE∞

(
β′, 2π − ε0

2
, 0
)
≤ sup

β∈[β̃,βc,∞)

gE∞

(
β, 2π − ε0

2
, 0
)
.

Since β̃ is arbitrary,

0 ≤ limsup
β↗βc,∞

gE∞

(
β, 2π − ε0

2
, 0
)
= gE∞

(
βc,∞, 2π − ε0

2
, 0
)
< gE∞(βc,∞, 2π, 0) = 0,

which is a contradiction. Therefore liminfβ↗βc,∞ τ∞(β) ≥ 2π. Since limsupβ↗βc,∞

τ∞(β) ≤ 2π, (4.3) holds.

In the following let x0 be that defined in (3.2), βc,∞ be that introduced in
Lemma 4.2 (i) and y∞(β) := cos( τ∞(β)

2
) (β ∈ (0, βc,∞)) with τ∞(·) introduced in

Lemma 4.2 (ii). We need to prepare an analogue of Lemma 3.2 with E∞.

Lemma 4.4. There exists U0 ∈ (0, 2emin

b
) such that the following statement holds.

For any U ∈ [−U0, 0) there exists Y ∈ (−1, 0) such that
√
1 + Y x0 ∈ (0, βc,∞) and

y∞(
√
1 + Y x0) = Y .

Proof. By using (4.2), (4.3) in place of Lemma 2.5, Lemma 1.2 (ii) respectively we
can repeat an argument parallel to the proof of Lemma 3.2 to prove the statement.

Proving the next lemma is the most complicated in this paper.

Lemma 4.5. Assume that emin

emax
=
√

9− 4
√
5. Then there exists y0 ∈ (−1, 0) such

that WE∞(x0, y) < 0 for any y ∈ (−1, y0].

Let us postpone the proof of the above lemma and show Proposition 1.8 here.

Proof of Proposition 1.8. Let y0 ∈ (−1, 0) be that introduced in Lemma 4.5. For
any U ∈ [− emin

sinh(2)b
, 0), β ∈ (0, βc,∞) the same inequality as the 2nd inequality

of Lemma 2.4 holds with y∞(β) in place of y(β). It follows that there exists
U0 ∈ (0, 2emin

b
) such that y∞(β) ∈ (−1, y0] for any U ∈ [−U0, 0), β ∈ (0, βc,∞).

By choosing U0 smaller if necessary we can apply Lemma 4.4 to ensure that for
any U ∈ [−U0, 0) there exists Y ∈ (−1, 0) such that

√
1 + Y x0 ∈ (0, βc,∞) and

y∞(
√
1 + Y x0) = Y ∈ (−1, y0]. Let us fix U ∈ [−U0, 0). Set β′ :=

√
1 + Y x0.

Recalling the conclusion of Lemma 4.5,

0 > WE∞(x0, Y ) = WE∞

(
β′

√
1 + Y

, Y

)
= WE∞

(
β′√

1 + y∞(β′)
, y∞(β′)

)
.(4.4)

By Lemma 4.2 (i) β′ ∈ (0, βc(p)) for any sufficiently large p ∈ R>0. Moreover by
Lemma 4.2 (ii)

lim
p→∞

y(β′, p) = y∞(β′),(4.5)
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where y(β, p) := cos( τ(β,p)
2

) for β ∈ (0, βc(p)). We can deduce from Lemma 4.1 and
(4.5) that

lim
p→∞

WEp

(
β′√

1 + y(β′, p)
, y(β′, p)

)
= WE∞

(
β′√

1 + y∞(β′)
, y∞(β′)

)
.

This coupled with (4.4) implies that there exists p ∈ R>0 such that β′ ∈ (0, βc(p))
and

0 > WEp

(
β′√

1 + y(β′, p)
, y(β′, p)

)
.

Finally the above inequality and (2.23) ensure that d2τ
dβ2 (β

′) < 0 for E = Ep. This
concludes the proof.

4.2 Negativity of the core function
It remains to prove Lemma 4.5. More strongly we will prove the next lemma, which
implies Lemma 4.5.

Lemma 4.6. Assume that emin

emax
=
√
9− 4

√
5. The function WE∞(x0, ·) : (−1, 0) →

R can be continued into a neighborhood of y = −1 in R as a real analytic function.
If we let WE∞(x0, ·) denote the continued function as well,

WE∞(x0,−1) = 0,
∂WE∞

∂y
(x0,−1) = 0,

1

2
· ∂

2WE∞

∂y2
(x0,−1) = −

√
2 · 53

22 · 32
.

Remark 4.7. At present deducing from Lemma 4.6 is the only way to prove Lemma
4.5. We show Lemma 4.6 by long calculations, though we organize the process as
much as possible. Since these derivatives eventually take simple values, there may
be a nice mathematical structure leading to a substantially simpler proof. However,
we are unable to reveal it. In the following we should keep in mind that any single
miscalculation ruins the proof of Lemma 4.6. We add that based on (3.6), (4.6),
it is straightforward to write a code to compute the low order terms of WE∞(x0, ·)
numerically in PC.

Recall that the partial derivatives of the function F∞ : R>0 × (−1, 0) → R
can be characterized as in (2.4), (2.5), (2.6), (2.7), (2.8). Moreover, WE∞ can be
written with the partial derivatives of F∞ as in (2.22). To shorten subsequent
formulas, we define the functions Gx, Gy, Gxx, Gxy, Gyy : (−1, 0) → R by

Gx(y) := (y + 1)F∞
x (
√
y + 1x0, y), Gy(y) :=

(y + 1)
3
2

x0
F∞
y (
√
y + 1x0, y),

Gxx(y) :=
x0
2
(y + 1)

3
2F∞

xx(
√
y + 1x0, y), Gxy(y) := (y + 1)2F∞

xy (
√
y + 1x0, y),

Gyy(y) :=
(y + 1)

5
2

x0
F∞
yy (
√
y + 1x0, y).

We can see from (2.22) that

WE∞(x0, y) =
2

(1− y)
3
2Gy(y)3

(4.6)
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·
(
− yGx(y)

2Gy(y) + (1− y)(2Gxx(y)Gy(y)
2 − 2Gx(y)Gy(y)Gxy(y) +Gyy(y)Gx(y)

2)
)
.

Moreover we set for m,n ∈ N ∪ {0}

Cm,n := Dd

∫
Γ∗
∞

dkTr

(
(
x2
0

2
E∞(k)2)m

(1 +
x2
0

2
E∞(k)2)n

)
.

By (3.6)

Cm,n = b

(
s1

(
x2
0

2
e2min)

m

(1 +
x2
0

2
e2min)

n
+ s2

(
x2
0

2
e2max)

m

(1 +
x2
0

2
e2max)

n

)
.

We are going to compute W∞(x0, y) up to the 2nd order term of y + 1. Let us
proceed step by step.

Lemma 4.8. The functions Gx, Gy, Gxx, Gxy, Gyy can be expanded into convergent
power series of y + 1 in a neighborhood of y = −1. Moreover, as y ↘ −1

Gx(y) = −C0,1 + 2C0,2 +

(
C2,2

2 · 3
− 2

3
C2,3 + C0,1 − C0,2

)
(y + 1) +O((y + 1)2),

Gy(y) = −C0,2 +

(
−C1,2

3
+
C2,3

3

)
(y + 1)

+

(
− C2,2

2 · 3 · 5
+

2

3 · 5
C3,3 −

C4,4

22 · 3

)
(y + 1)2 +O((y + 1)3),

Gxx(y) = C1,2 − 22C1,3

+

(
C2,2

3
− C3,3

3
− 22

3
C2,3 + 2C3,4 − C1,2 + 2C1,3

)
(y + 1)

+

(
C3,2

2 · 3 · 5
− 2

3 · 5
C4,3 +

C5,4

22 · 3
+
C3,3

5
+

22

5
C4,4 −

2

3
C5,5 −

C2,2

3
+

2

3
C2,3 − C3,4

)
(y + 1)2

+O((y + 1)3),

Gxy(y) = 3C0,2 − 22C0,3 + (−C2,3 + 2C2,4 + C0,1 − 3C0,2 + 2C0,3)(y + 1)

+

(
−C3,3

3 · 5
+
C4,4

22
+

2

3 · 5
C3,4 −

2

3
C4,5 −

C2,2

2 · 3
+ C2,3 − C2,4

)
(y + 1)2 +O((y + 1)3),

Gyy(y) = 2C0,3 +

(
2

3
C1,3 − C2,4

)
(y + 1) +

(
C2,3

3 · 5
− 2

5
C3,4 +

C4,5

3

)
(y + 1)2

+O((y + 1)3).

Remark 4.9. We will find that the 2nd order term of Gx(y) is unnecessary to
prove Lemma 4.6. So we do not characterize it here for conciseness.

Proof of Lemma 4.8. For j ∈ N ∪ {0} let us set

Rj := Dd

∫
Γ∗
∞

dkTr

(
1 +

cosh(
√
y + 1x0E∞(k))− 1

y + 1

)−j

,

Sj := Dd

∫
Γ∗
∞

dkTr

(
sinh(

√
y + 1x0E∞(k))√

y + 1x0E∞(k)

(
1 +

cosh(
√
y + 1x0E∞(k))− 1

y + 1

)−j
)
,
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S̃j := Dd

∫
Γ∗
∞

dkTr

·

(
x20
2
E∞(k)2

sinh(
√
y + 1x0E∞(k))√

y + 1x0E∞(k)

(
1 +

cosh(
√
y + 1x0E∞(k))− 1

y + 1

)−j
)
.

We can derive from (2.4), (2.5), (2.6), (2.7), (2.8) with E = E∞ that

Gx(y) = −R1 + 2R2 + (R1 −R2)(y + 1),(4.7)
Gy(y) = −S2,(4.8)
Gxx(y) = S̃2 − 4S̃3 + (−S̃2 + 2S̃3)(y + 1),(4.9)
Gxy(y) = 3R2 − 4R3 + (R1 − 3R2 + 2R3)(y + 1),(4.10)
Gyy(y) = 2S3.(4.11)

We can see that Rj, Sj, S̃j (j ∈ N ∪ {0}) can be expanded into convergent power
series of y + 1 in a neighborhood of y = −1 and so can Gx, Gy, Gxx, Gxy, Gyy.

We want to characterize low order terms of Rj, Sj, S̃j. Let us prepare formulas
for this purpose. Let x ∈ R>0, a ∈ R\{0}, n ∈ N. Set X := x2

2
, A := a2. Observe

that(
1 +

cosh(
√
y + 1xa)− 1

y + 1

)−n

=

(
1 +XA+

X2A2

2 · 3
(y + 1) +

X3A3

2 · 32 · 5
(y + 1)2

)−n

+O((y + 1)3)

= (1 +XA)−n

(
1− X2A2

2 · 3(1 +XA)
(y + 1)

+

(
− X3A3

2 · 32 · 5(1 +XA)
+

X4A4

22 · 32(1 +XA)2

)
(y + 1)2

)n

+O((y + 1)3),

sinh(
√
y + 1xa)√

y + 1xa
= 1 +

XA

3
(y + 1) +

X2A2

2 · 3 · 5
(y + 1)2 +O((y + 1)3).

By using the above equalities we obtain that(
1 +

cosh(
√
y + 1xa)− 1

y + 1

)−1

=
1

1 +XA
− X2A2

2 · 3(1 +XA)2
(y + 1)

+

(
− X3A3

2 · 32 · 5(1 +XA)2
+

X4A4

22 · 32(1 +XA)3

)
(y + 1)2 +O((y + 1)3),(

1 +
cosh(

√
y + 1xa)− 1

y + 1

)−2

=
1

(1 +XA)2
− X2A2

3(1 +XA)3
(y + 1)

+

(
− X3A3

32 · 5(1 +XA)3
+

X4A4

22 · 3(1 +XA)4

)
(y + 1)2 +O((y + 1)3),
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(
1 +

cosh(
√
y + 1xa)− 1

y + 1

)−3

=
1

(1 +XA)3
− X2A2

2(1 +XA)4
(y + 1)

+

(
− X3A3

2 · 3 · 5(1 +XA)4
+

X4A4

2 · 3(1 +XA)5

)
(y + 1)2 +O((y + 1)3),

sinh(
√
y + 1xa)√

y + 1xa

(
1 +

cosh(
√
y + 1xa)− 1

y + 1

)−2

(4.12)

=
1

(1 +XA)2
+

(
XA

3(1 +XA)2
− X2A2

3(1 +XA)3

)
(y + 1)

+

(
X2A2

2 · 3 · 5(1 +XA)2
− 2X3A3

3 · 5(1 +XA)3
+

X4A4

22 · 3(1 +XA)4

)
(y + 1)2

+O((y + 1)3),

sinh(
√
y + 1xa)√

y + 1xa

(
1 +

cosh(
√
y + 1xa)− 1

y + 1

)−3

(4.13)

=
1

(1 +XA)3
+

(
XA

3(1 +XA)3
− X2A2

2(1 +XA)4

)
(y + 1)

+

(
X2A2

2 · 3 · 5(1 +XA)3
− X3A3

5(1 +XA)4
+

X4A4

2 · 3(1 +XA)5

)
(y + 1)2 +O((y + 1)3).

It follows that

R1 = C0,1 −
C2,2

2 · 3
(y + 1) +

(
− C3,2

2 · 32 · 5
+

C4,3

22 · 32

)
(y + 1)2 +O((y + 1)3),

R2 = C0,2 −
C2,3

3
(y + 1) +

(
− C3,3

32 · 5
+

C4,4

22 · 3

)
(y + 1)2 +O((y + 1)3),

R3 = C0,3 −
C2,4

2
(y + 1) +

(
− C3,4

2 · 3 · 5
+
C4,5

2 · 3

)
(y + 1)2 +O((y + 1)3),

S2 = C0,2 +

(
C1,2

3
− C2,3

3

)
(y + 1) +

(
C2,2

2 · 3 · 5
− 2

3 · 5
C3,3 +

C4,4

22 · 3

)
(y + 1)2

+O((y + 1)3),

S3 = C0,3 +

(
C1,3

3
− C2,4

2

)
(y + 1) +

(
C2,3

2 · 3 · 5
− C3,4

5
+
C4,5

2 · 3

)
(y + 1)2

+O((y + 1)3),

S̃2 = C1,2 +

(
C2,2

3
− C3,3

3

)
(y + 1) +

(
C3,2

2 · 3 · 5
− 2

3 · 5
C4,3 +

C5,4

22 · 3

)
(y + 1)2

+O((y + 1)3),

S̃3 = C1,3 +

(
C2,3

3
− C3,4

2

)
(y + 1) +

(
C3,3

2 · 3 · 5
− C4,4

5
+
C5,5

2 · 3

)
(y + 1)2

+O((y + 1)3).

We can characterize S̃2, S̃3 as above by multiplying both sides of (4.12), (4.13) by
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XA. By substituting the above equalities into (4.7), (4.8), (4.9), (4.10), (4.11) we
can derive the claimed equalities.

Next we compute each low order term of Gx, Gy, Gxx, Gxy, Gyy. To this end,
let us compute Cm,n for all the necessary indices m, n as efficiently as possible.
The following relations help us do so.

Lemma 4.10. (i) For any m,n ∈ N≥1 Cm,n = Cm−1,n−1 − Cm−1,n.

(ii) For any m,n ∈ N with m ≥ 2, n ≥ 3

Cm,n =
5

26
Cm−2,n−3.

Proof. (i): Use the equality xm = xm−1(x + 1) − xm−1 in the numerator of the
integrand.

(ii): Since (3−
√
5

2
)3 = 9− 4

√
5,(

emin

emax

) 2
3

=
3−

√
5

2
,

(
emax

emin

) 2
3

=
3 +

√
5

2
.(4.14)

Recalling the definition (3.2) and substituting (4.14), we can derive that

(
1 +

x20
2
e2min

)−1

=

(
1 +

(
emin

emax

) 2
3

+

(
emin

emax

) 4
3

)−1

=
3 +

√
5

8
,(4.15)

(
1 +

x20
2
e2max

)−1

=

(
1 +

(
emax

emin

) 2
3

+

(
emax

emin

) 4
3

)−1

=
3−

√
5

8
.

Moreover, these imply that(
1 +

x20
2
e2min

)−2

=
7 + 3

√
5

32
,

(
1 +

x20
2
e2max

)−2

=
7− 3

√
5

32
,(4.16) (

1 +
x20
2
e2min

)−3

=
9 + 4

√
5

64
,

(
1 +

x20
2
e2max

)−3

=
9− 4

√
5

64
.

Therefore

(
x2
0

2
e2min)

2

(1 +
x2
0

2
e2min)

3
=

(
1 +

x20
2
e2min

)−1

− 2

(
1 +

x20
2
e2min

)−2

+

(
1 +

x20
2
e2min

)−3

=
5

26
,

Similarly

(
x2
0

2
e2max)

2

(1 +
x2
0

2
e2max)

3
=

5

26
.

These equalities ensure the claimed result.

We can achieve our purpose by using the values of Cm,n given in the next lemma.
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Lemma 4.11. Some of Cm,n/b (m,n ∈ N ∪ {0}) are computed as follows.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

m = 0 1
1

23
1

25
1

26

m = 1 32
7

23
3

25
1

26

m = 2
5 · 13
23

52

25
5

26
5

29

m = 3
5 · 47
25

32 · 5
26

5 · 7
29

m = 4
52 · 17
26

52 · 13
29

53

211

m = 5
3 · 52 · 41

29
52 · 47
211

Remark 4.12. Though it is technically possible to compute Cm,n for all m,n ∈
{0, 1, · · · , 5}, we present only those necessary for our purpose.

Proof of Lemma 4.11. We can see that once C0,n (n = 0, 1, 2, 3), C1,0 are obtained,
the rest can be derived by recursively applying the formulas proved in Lemma 4.10.
Let us explain how to compute C0,n (n = 0, 1, 2, 3), C1,0. Recalling (2.33), we set
A1 := e2min, A2 := e2max, X := α(A1, A2). It follows that x2

0

2
= α(A1, A2). First

we need to compute s1, s2 defined in (3.5). The terms Bm
1 , Bm

2 (m = 1, 2, 3) have
already been obtained in (4.15), (4.16). By using them we have that

D1,1 = B3
1 =

9 + 4
√
5

64
,

D1,2 =
1

2
B1B2(8B1B2 +B1 +B2 − 4B2

1 − 4B2
2) = − 1

64
,

which yield that

s1 =
5− 2

√
5

10
, s2 =

5 + 2
√
5

10
.

We can combine these with the equalities 1
b
C0,n = s1B

n
1 + s2B

n
2 (n = 0, 1, 2, 3) to

obtain the claimed values. Moreover, by (4.15)

x20
2
e2min = 5− 2

√
5,

x20
2
e2max = 5 + 2

√
5,

and thus

1

b
C1,0 = s1

x20
2
e2min + s2

x20
2
e2max = 32.
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By substituting the values presented in Lemma 4.11 into the formulas listed in
Lemma 4.8 we have the following.

Lemma 4.13. As y ↘ −1,
1

b
Gx(y) = − 1

24
+

11

26
(y + 1) +O((y + 1)2),

1

b
Gy(y) = − 1

25
− 1

26 · 3
(y + 1) +

7 · 13
211 · 3

(y + 1)2 +O((y + 1)3),

1

b
Gxx(y) =

1

25
− 1

28
(y + 1)− 3 · 103

211
(y + 1)2 +O((y + 1)3),

1

b
Gxy(y) =

1

25
+

1

28
(y + 1) +

113

211 · 3
(y + 1)2 +O((y + 1)3),

1

b
Gyy(y) =

1

25
+

1

29 · 3
(y + 1)− 11

211 · 3
(y + 1)2 +O((y + 1)3).

Finally we can prove Lemma 4.6.

Proof of Lemma 4.6. The claim concerning the analytic continuation into a neigh-
borhood of y = −1 is implied by the equality (4.6), the initial statement of Lemma
4.8 and the fact Gy(−1) 6= 0. Let us compute 0th, 1st and 2nd order term in the
expansion of WE∞(x0, y) with respect to y + 1. Set for y ∈ R<0 close to −1

J(y) :=− yGx(y)
2Gy(y)

+ (1− y)
(
2Gxx(y)Gy(y)

2 − 2Gx(y)Gy(y)Gxy(y) +Gyy(y)Gx(y)
2
)
,

so that

WE∞(x0, y) =
2

(1− y)
3
2Gy(y)3

J(y).(4.17)

We will see that it suffices to compute J(−1), dJ
dy
(−1), 1

2!
d2J
dy2

(−1) to achieve our
goal. Set

G̃(y) := 2Gxx(y)Gy(y)
2 − 2Gx(y)Gy(y)Gxy(y) +Gyy(y)Gx(y)

2

for simplicity. Observe that

J(y) = Gx(y)
2Gy(y) + 2G̃(y) + (y + 1)

(
−Gx(y)

2Gy(y)− G̃(y)
)
.(4.18)

In the following for any smooth function f of y and j ∈ N ∪ {0} f (j) denotes
1
j!

djf
dyj

(−1). By Lemma 4.13

1

b3
G̃(0) =

1

214
,

1

b3
(G2

xGy)
(0) =

1

b3
(G(0)

x )2G(0)
y = − 1

213
.(4.19)

Thus
1

b3
J (0) =

1

b3
(
(G2

xGy)
(0) + 2G̃(0)

)
= 0.

Moreover, by using the 0th order terms and then the 1st order terms given in
Lemma 4.13

1

b3
G̃(1) =

1

b3
(
2G(1)

xx (G
(0)
y )2 + 22G(0)

xxG
(0)
y G(1)

y − 2G(1)
x G(0)

y G(0)
xy − 2G(0)

x G(1)
y G(0)

xy

(4.20)
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− 2G(0)
x G(0)

y G(1)
xy +G(1)

yy (G
(0)
x )2 + 2G(0)

yyG
(0)
x G(1)

x

)
=

1

b

(
1

29
G(1)

xx − 1

29
G(1)

x − 1

28
G(1)

xy +
1

28
G(1)

yy

)
= − 5 · 7

215 · 3
,

1

b3
(G2

xGy)
(1) =

1

b3
(
2G(1)

x G(0)
x G(0)

y + (G(0)
x )2G(1)

y

)
=

1

b

(
1

28
G(1)

x +
1

28
G(1)

y

)
=

1

29 · 3
.

(4.21)

Substitution of (4.19), (4.20), (4.21) yields that
1

b3
J (1) =

1

b3
(
(G2

xGy)
(1) + 2G̃(1) − (G2

xGy)
(0) − G̃(0)

)
= 0.

Let us compute J (2). By (4.18)

J (2)

(4.22)

= (G2
xGy)

(2) + 2
(
2(GxxG

2
y)

(2) − 2(GxGyGxy)
(2) + (GyyG

2
x)

(2)
)
− (G2

xGy)
(1) − G̃(1).

Let us decompose each term with the superscript “(2)” in the right-hand side of
(4.22) by using the 0th order terms given in Lemma 4.13.

1

b3
(G2

xGy)
(2) =

1

b3
(
2G(2)

x G(0)
x G(0)

y + (G(0)
x )2G(2)

y + (G(1)
x )2G(0)

y + 2G(1)
x G(0)

x G(1)
y

)(4.23)

=
1

b

(
1

28
G(2)

x +
1

28
G(2)

y

)
+

1

b2

(
− 1

25
(G(1)

x )2 − 1

23
G(1)

x G(1)
y

)
,

1

b3
(GxxG

2
y)

(2) =
1

b3
(
G(2)

xx (G
(0)
y )2 + 2G(0)

xxG
(2)
y G(0)

y + 2G(1)
xxG

(1)
y G(0)

y +G(0)
xx (G

(1)
y )2

)(4.24)

=
1

b

(
1

210
G(2)

xx − 1

29
G(2)

y

)
+

1

b2

(
− 1

24
G(1)

xxG
(1)
y +

1

25
(G(1)

y )2
)
,

1

b3
(GxGyGxy)

(2) =
1

b3
(
G(2)

x G(0)
y G(0)

xy +G(0)
x G(2)

y G(0)
xy +G(0)

x G(0)
y G(2)

xy +G(1)
x G(1)

y G(0)
xy

(4.25)

+G(1)
x G(0)

y G(1)
xy +G(0)

x G(1)
y G(1)

xy

)
=

1

b

(
− 1

210
G(2)

x − 1

29
G(2)

y +
1

29
G(2)

xy

)
+

1

b2

(
1

25
G(1)

x G(1)
y − 1

25
G(1)

x G(1)
xy − 1

24
G(1)

y G(1)
xy

)
,

1

b3
(GyyG

2
x)

(2) =
1

b3
(
G(2)

yy (G
(0)
x )2 + 2G(0)

yyG
(2)
x G(0)

x + 2G(1)
yyG

(1)
x G(0)

x +G(0)
yy (G

(1)
x )2

)(4.26)

=
1

b

(
1

28
G(2)

yy − 1

28
G(2)

x

)
+

1

b2

(
− 1

23
G(1)

yyG
(1)
x +

1

25
(G(1)

x )2
)
.

By substituting (4.20), the 2nd equality of (4.21), (4.23), (4.24), (4.25), (4.26) into
(4.22)

1

b3
J (2) =

1

b

(
1

28
G(2)

y +
1

28
G(2)

xx − 1

27
G(2)

xy +
1

27
G(2)

yy

)(4.27)
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+
1

b2

( 1

25
(G(1)

x )2 − 1

22
G(1)

x G(1)
y − 1

22
G(1)

xxG
(1)
y +

1

23
(G(1)

y )2 +
1

23
G(1)

x G(1)
xy

+
1

22
G(1)

y G(1)
xy − 1

22
G(1)

yyG
(1)
x

)
+

1

b

(
− 1

28
G(1)

x − 1

28
G(1)

y

)
+

5 · 7
215 · 3

=
1

b

(
1

28
G(2)

y +
1

28
G(2)

xx − 1

27
G(2)

xy +
1

27
G(2)

yy

)
+

1

b
G(1)

x

(
1

b

(
1

25
G(1)

x − 1

22
G(1)

y +
1

23
G(1)

xy − 1

22
G(1)

yy

)
− 1

28

)
+

1

b
G(1)

y

(
1

b

(
− 1

22
G(1)

xx +
1

23
G(1)

y +
1

22
G(1)

xy

)
− 1

28

)
+

5 · 7
215 · 3

.

We remark that G(2)
x is canceled here. By applying Lemma 4.13 again we have that

(1st term of R.H.S of (4.27)) = − 271

217 · 3
,

(2nd term of R.H.S of (4.27)) = 11 · 19
217 · 3

,

(3rd term of R.H.S of (4.27)) = 1

213 · 32
.

Therefore

1

b3
J (2) = − 271

217 · 3
+

11 · 19
217 · 3

+
1

213 · 32
+

5 · 7
215 · 3

=
53

216 · 32
.

By combining the above results with (4.17) and the equality

2

(1− y)
3
2Gy(y)3

=
1

√
2(G

(0)
y )3

+O((y + 1))

we see that as y ↘ −1

WE∞(x0, y) =
1

√
2(G

(0)
y )3

J (2)(y + 1)2 +O((y + 1)3)

= −
√
2 · 53

22 · 32
(y + 1)2 +O((y + 1)3).

This implies the results.
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