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Abstract

We study geometric properties of the domain of the two parameters (in-
verse temperature, imaginary magnetic field) where the gap equation of the
BCS model with imaginary magnetic field has a positive solution. If the
interaction is weak and the free dispersion relation is non-vanishing, the
domain is a disjoint union of periodic copies of one representative set in
the plane of (inverse temperature, imaginary magnetic field). In this pa-
per we provide a necessary and sufficient condition for the representative
set to be convex as the main result. More precisely we prove the following.
The representative set is convex for any weak coupling and non-vanishing
free dispersion relation if and only if the minimum of the magnitude of the
free dispersion relation over the maximum is larger than the critical value
V9 — 44/5. In the context of dynamical quantum phase transition (DQPT)
the imaginary magnetic field is considered as the real time variable. So this
is an analysis of the phase boundary of a DQPT in the plane of (inverse
temperature, real time). In particular convexity of the representative phase

boundary is characterized by the critical constant v/9 — 4v/5. The gap equa-
tion rigorously derived in the preceding paper [Y. Kashima, J. Math. Sci.
Univ. Tokyo 28 (2021), 399-556] is at the core of our analysis. *

1 Introduction and main results

1.1 Introduction

It is an interesting subject to study the Bardeen-Cooper-Schrieffer (BCS) model,
which has been a paradigm of describing phase transitions, in non-equilibrium
setting. In recent years a non-equilibrium phenomenon called dynamical quantum
phase transition (DQPT) has been actively investigated. DQPTs are defined by
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non-analyticity of a dynamical analogue of the free energy density with the real
time variable ([9], [7]). It emerged that the BCS model with imaginary magnetic
field introduced in [11], [12], [13] can naturally fit in the formalism of DQPT at
positive temperature. This connection motivates us to reveal universal properties
of this non-Hermitian system.

Let us explain more about the link between the BCS model with imaginary
magnetic field and the concept of DQPT. Let H, S, denote the BCS model with
the reduced BCS interaction, the z-component of the spin operator respectively.
These operators will be defined explicitly in Subsection 1.2. We want to know
where the following function loses analyticity in R.g x R.

1 .

(1.1) (B,t) — A}l_r}Iloo (—5—]\[ log(Tr 6_6H+’tSZ)) .

Here f is the inverse temperature and N denotes the system size. We are calling
the complex number it (¢t € R) imaginary magnetic field for convenience. The real
variable ¢ can be considered as real time in the context of DQPT as explained
below. Since the right-hand side of (1.1) can formally be seen as the free energy
density of the BCS model interacting with the imaginary magnetic field, we call
the loss of analyticity of the function (1.1) phase transition by analogy with the
conventional definition of phase transition. In this paper as in our previous work
[11], [12], [13], [14] the BCS interaction is assumed to be weak, and thus there is
no phase transition defined by non-analyticity of the free energy density without
the imaginary magnetic field
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We conclude that the regularity of (1.1) is the same as that of
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in R.p x R. The function (1.2) can be considered as the finite-temperature version
of the rate function of the Loschmidt amplitude (1, €51y ), where 1)y is the ground
state of H. The appearance of non-analyticity of the function (1.2) with the time
t defines DQPT. This definition is in line with e.g. [3], [8], [16]. On the other
hand, according to [23], [21], the characteristic function of the work done in the
many-electron system by suddenly changing the initial Hamiltonian H to H+ S, is
given by

Tr(e~HeitHeit(H+5:))
Tre—AH

(1.4)
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Based on this observation, DQPT is defined by non-analyticity of the function
(1.3) with ¢. This alternative definition appears in e.g. [1], [17], [20]. As explained
in [21], (1.4) is also considered as the finite-temperature version of the Loschmidt
amplitude (v, e M (H+5:)90) - So the variable ¢ can be interpreted as real time in
this definition as well. We can now see that studying properties of (1.1) is relevant
to the recent physical research of DQPT, though the papers [3], [8], [16], [1], [17],
[20] treat 1D quantum spin systems and 2D non-interacting Fermion systems as
benchmark models. In this paper we aim at characterizing the phase boundary
where the function (1.1) loses analyticity geometrically. In other words our purpose
is to characterize the phase boundary of DQPT in the plane of (inverse temperature,
real time).

For clarity we remark that it is not common at present to draw a phase boundary
with the real time axis as we do in this paper. In the physics literature on DQPT
what is called dynamical phase diagrams are drawn with other control parame-
ters for which a dynamical analogue of the free energy density shows non-analytic
behavior with time. See e.g. [25], [6], [16].

In order to explain the main result of this paper in more detail, let us recall
what have been proved in the BCS model with imaginary magnetic field so far.
It was proved in the preceding papers [11], [12], [13] that transitions between the
normal phase and the superconducting phase occur at positive temperature. In
the plane of (3,t) the superconducting phase is a domain where the gap equation
has a positive solution A(fS,t), which we call gap function or order parameter.
In [11], [12] where the free Fermi surface is non-empty the possible magnitude
of the BCS interaction depends on the temperature and the imaginary magnetic
field. In [13] where the free Fermi surface is empty or in other words the free
dispersion relation is non-vanishing the interaction must still be small. However,
the magnitude can be independent of the temperature and the imaginary magnetic
field. This enables us to fully draw the phase boundary on the plane of (inverse
temperature, imaginary magnetic field) or equivalently (inverse temperature, real
time) for any sufficiently small BCS coupling and study its geometric properties
while justifying the derivation of the gap equation. In [13, Section 2| we saw that
the phase boundary is a disjoint union of periodic copies of one representative
simple curve and the upper half of the representative curve is the reflection of its
lower half across a horizontal line. To understand the situation with non-vanishing
free dispersion relation better, we remark the following relations. Here p(€ Ry)
denotes a period.

(1.5)

(Phase boundary)

= {(5,t) € Ryp x R | the function (1.1) is not analytic at (5,t)}

= Boundary of {(53,t) € Ry¢ x R | the gap equation has a positive solution A(S, )}
NRsg xR

= |_| {(B,t+pm) | (B,t) € (the representative simple curve)},
meEZ

(the representative simple curve) = (the lower half) U (the upper half),

(the upper half) = (reflection of the lower half across a horizontal line),



(1.6)
{(B,t) € Ryp x R | the gap equation has a positive solution A(S,¢)}

= |_| {(B,t+pm) | (B,t) € (the representative set)},
meZ

Boundary of (the representative set) "R-o x R

= (the representative simple curve).

Therefore it is sufficient to focus on the lower half of the representative curve to
analyze the whole phase boundary.

To simplify subsequent explanations, let €,in, €mar (0 < €min < €mae) denote
the minimum, the maximum of the magnitude of a non-vanishing free dispersion
relation respectively. These will be rigorously defined in Subsection 1.2.

In this paper we continue working on the BCS model whose free dispersion re-
lation is non-vanishing under the influence of imaginary magnetic field at positive
temperature. As explained above, the set {(f,t) € Rog x R | A(B,t) > 0} is a
disjoint union of periodic copies of one representative set of (/3,t), whose boundary
is the representative simple curve. We prove the following statement as the main
result. The representative set is convex for any non-vanishing free dispersion rela-
tion having €,,in, €mae: and any weak coupling constant if and only if :;’:—a’; is larger

than the critical value v/9 — 41/5.

Since the upper half of the representative simple curve is the reflection of the
lower half, the convexity of the representative set is equivalent to the convexity of
the lower half of the representative curve. The main results of [13, Section 2|, [14]
and this paper can be summarized in terms of geometric properties of the lower
half of the representative curve of the phase boundary as follows.

e In [13, Theorem 2.19] the unique existence of a local minimum point is char-
acterized by the relation between x—a’; and the critical constant /17 — 12v/2.

o In [14, Theorem 1.7, Theorem 1.8] the (non-)existence of a stationary point
of inflection is characterized by the relation between == and the critical

constant /17 — 12v/2.

e In Theorem 1.11 of this paper the convexity is characterized by the relation
between :::_az and the critical constant v/9 — 4/5.

A more rigorous version of the summary is given in Remark 1.15. Since the convex-
ity implies the uniqueness of a local minimum point and /9 — 4\/§(z 0.236068) >
V1T — 12\/5(% 0.171573), the stronger property of the phase boundary is charac-
terized by the stronger inequality =min 9 — 44/5 in Theorem 1.11 than in [13,

Theorem 2.19]. We are interested fijﬁm’zhe fact that various fundamental properties
of the phase boundary can be systematically characterized by the relation between
fmin and the critical constants. This is the mathematical motivation behind this
series. We add that existence of a stationary point of inflection is equivalent to
existence of a higher order phase transition with temperature, and thus [14, The-
orem 1.7, Theorem 1.8] characterize the (non-)existence of a higher order phase
transition with temperature as well.

We focus on a class of non-vanishing free dispersion relations mainly because the

derivation of the gap equation from the many-Fermion system is justified for any
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temperature and imaginary magnetic field. DQPTs in insulating Hamiltonians with
ground state topology are a central topic in the research area. Some of the bench-
mark models can be written with one-particle Hamiltonian matrices belonging to
our class. These are e.g. the Haldane model ([5], [8]), the Su-Schrieffer-Heeger
model ([22], [10]). Concrete construction of these models with our notations was
given in [14, Remark 1.2]. It is encouraging that our class of non-vanishing free
dispersion relations is relevant to the recent research of DQPT.

There are technically close relations between [13, Section 2] and [14]. The
previous work [14] applies some key lemmas established in [13, Section 2]. In
this paper we admit the gap equation derived in [13]. We also have a few simple
lemmas in common with [13, Section 2|, [14]. However, the technical construction
is essentially different from these preceding papers. Key lemmas necessary to prove
the main results are newly established here. In this sense this paper is more self-
contained than [14].

We do not find a research article on DQPT in the BCS model at positive
temperature, apart from [11], [12], [13], [14] at present. Concerning DQPTs in the
BCS model at zero temperature, we cite the recent paper [19]. Though only a
few articles report on DQPT in the BCS model so far, there are many papers on
non-equilibrium phases characterized by long time behavior of the dynamical order
parameter of the model. See e.g. the references of [19] or [18], [24]. The paper [19]
investigates whether the DQPT can indicate these non-equilibrium phases defined
differently.

This paper is outlined as follows. In the next subsection we set up notations
and state the main results. In Section 2 we prove that if == > /9 — 44/5, the
representative set of the domain where the gap function is poéniﬁve is convex for any

sufficiently small coupling constant. In Section 3 we prove that if fmn < /9 — 44/,
the convexity of the representative set does not necessarily hold. Flnally in Section

4 we show that if =i = /9 — 44/5, the convexity does not necessarily hold,

either. This Completes the Characterlzatlon of the convex1ty in terms of the relation

between :m—" and the critical constant /9 — 44/5.

1.2 Notations and the main results

Here we introduce necessary notations and state the main results. We are going
to analyze the phase boundary, which is governed by the gap equation. The gap
equation was originally derived from a many-electron system in [13]. Though we
do not explain the derivation in detail, it must be informative to present the cor-
responding many-electron system explicitly. Let the number d(€ N) denote the
spatial dimension. Let vy, --- , vy be a basis of R¢ and vy, - - - , V4 be its dual basis.
Let b, L € N. We consider a general spatial lattice which has b sites in its unit cell.
Such a lattice can be identified as B x I', where B := {1,--- b},

d
I':= {ijVj

=1

m; € {0,1,--- ,L—-1}y (j=1,--- ,d)}.

The momentum lattice dual to B x I' is B x I'*, where

d 2T 2T
- {Zmﬁj iy {0 -} =1 ,d>}.
j=1




The free Hamiltonian Hg is defined by

(1.7) Z S S E VB (9, 1) Yy

(/J x (71 v) oe{t )} kel*

where (-,-) denotes the standard inner product of R¢ and U or Yoxo ((p,%,0) €
B x ' x {1,]}) denote the creation, the annihilation operator on the Fermionic
Fock space Fy(L*(B x T' x {1,]})) respectively. The matrix-valued function FE :
R? — Mat(b, C) plays an important role in this paper. We call it one-particle free
Hamiltonian matrix and its eigenvalues parameterized by the momentum variable
k free dispersion relations. With constants €,,in, €mer € Rsq satisfying €, < €maz
we define the set €(€min, €maz) of one-particle free Hamiltonian matrices as follows.
E € E(emin, €maz) if and only if

(1.8) E € C*(R% Mat(b,C)),
E(k) = E(k)*, Vk € R,
E(k+2mv;) = E(k), Vk € RY, j € {1,---,d},

(1.9) E(k) = E(—k), Vk € R?,
1.1 inf  inf E(k = €mi
(1.10) Jnf - inf | E(K)uller = emin,
with [|u =1

(1.11) sup ||E(k)|loxb = €maz-

keRd
Here || - ||co is the standard norm of C? induced by the Hermitian inner product
and || - ||pxp is the operator norm on Mat(b,C). Here we consider Mat(b,C) as

a Banach space with the norm || - [[yx; and C*°(R4, Mat(h,C)) as the set of the
Banach space valued smooth functions. In fact the smoothness (1.8) can be relaxed
and the symmetry (1.9) is not needed at all to prove the main results of this
paper. We assume them only to identify the gap equation analyzed here as that
rigorously derived from the many-electron system based on these conditions in [13].
Crystalline lattices well studied in condensed matter physics can be expressed as Bx
I'. For example d =2, b =2, vi = (1,0)", vo = (3, %g)T for the honeycomb lattice,
d=2,b=3,vi = (1,00, vy = (0,1)T for the Copper Oxide lattice. By tuning
the onsite energy free Hamiltonians of hopping electron on these lattices can be
formulated in the form (1.7) with some FE € £(€min, €maz)- The Su-Schrieffer-Heeger
(SSH) model ([22], [10]) and the Haldane model ([5], [8]) are benchmark models
showing DQPTs at positive temperature. These models are originally spinless. Our
free Hamiltonian covers their trivial extensions with spin. See [14, Remark 1.2] for
formulating the SSH model and the Haldane model into the form (1.7).

In the infinite-volume limit L — oo the momentum lattice I'* becomes the
following set.

{ d
For E € E(emin, €maz) We define the function gg : Rup x R X R — R by
(1.12)

k; € [0,27] (‘:1,---,d)} (C R%).

ge(z,t, 2)



o _i . sinh(z\/F (k)% + 22)
U D /;o it ((cos(t/Q) + cosh(z/E(k)? + 22))/E(k)? + 22) 7

where Dy = |det(vy,- -+ ,vq)|"1(27)"@ and U € R_,. Originally the parameter
U controls the strength of attractive interaction between Cooper pairs. For any
function f : R\{0} — C and non-singular Hermitian matrix £ € Mat(b,C) we
define f(E) € Mat(b,C) by the spectral decomposition. For (g,t) € Ryy x R we
call the equation gg(8,t, A) = 0 with unknown A € R>q gap equation.

The free energy density derived in [13, Theorem 1.3 (ii)] explicitly depends on
the gap function A. Let us recall the statement. For any proposition P 1p := 1
if P is true, 1p := 0 otherwise. Let E € E(€min, €maz)- For (5,t) € Rog x R let
A € R be a solution to the gap equation if exists. As we will see in Lemma 1.1,
such A is unique. Set A := 0 if there is no solution to the gap equation. If

2¢ . d+1
(1.13) Ue 5 min{ e, er-2 1,0

with ¢ € (0, 1] depending only on d, b, (v;)%_, and the quantity

d
oM
su su —F(k 1 ‘ ,
(G=ta) 1T bxb
(1.14) Lh_f){)lo( 3L log(Tre™ 5"'+“5z))
LeN
A? D ¢
=— - dk Trlog [ 2cos = | e PEW
U B Jrs, 2

B(VEM)+A%=E(k) | =B «/E(k)2+A2+E(k))>

where
(115) H:= H() + V,
U . s 1 . *
V= L_ Z ¢pr¢px¢¢ny¢¢nyT7 S, = 5 Z (prTwﬂXT - wﬂXin"i)‘

(p»x),(n,¥y)
px) ey (p,x)eBXT

The operator V is the reduced BCS interaction and S, is the z-component of the
spin operator. The operator H is called the BCS model or the reduced BCS model
because of the form of interaction. For clarity we remark that in [13, Theorem 1.3
(ii)] the infinite-volume limit

lim( ﬁLdlog(Tre (HHGSZ)))

with 8 € R was derived. Since the real parameter 6 can be chosen arbitrarily, the
above statement follows. The Fermionic operators appear only in this subsection.

As summarized in Lemma 1.3 later, the free energy density loses analyticity on
the boundary of the domain of (3, t) where the gap equation has a positive solution.
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To describe this precisely, we need to know properties of the gap equation. The
following lemma is essentially the same as [13, Lemma 1.2]. However, as it is
important for the present paper, let us give the proof here. The claim (iv) provides
the rigorous version of (1.6). Let tanh™" : (=1,1) — R be the inverse function of
tanh : R — (—1,1).

Lemma 1.1. Assume that U € (—22i2 0). Then there uniquely exists

2 b
B, € <0, tanh ™! (ﬂ)}
Emin 2€min
such that the following statements hold.

(i) If B> Be, ge(B,t,2) #0 for any (t,z) € R x Rxy.

(7i) gg(Be,t,A) = 0 with (t,A) € R x Rsq if and only if t = 21 (mod 4m) and
A =0.

(iii) If 0 < B < B, there exists (t,A) € R x Ryg such that gg(5,t,A) = 0.
Such A is unique. Moreover there uniquely exists T(5) € (m,2m) such that
ge(B,07(8) + 4mm,0) =0 for any 6 € {—1,1}, m € Z.

(iv) Let the function f— 7(5) : (0, 8.) — (7,2m) be defined by the claim (iii).

(1.16)

{(B,t) € Ryg x R | there uniquely exists A € Rg such that gg(5,t, A) =0}
={(B,t) € Rug x R | gr(5,t,0) > 0}

= | [{(B.) eRoo xR | B€(0,8.), t € (7(B) + 4mm, —7(B) + 4(m + 1)m)}.

meZ

Proof. Observe that

9 1
95(8,2m,0) = =177 + Da /r& dk T <tanh<§E(k)>E<k>> |

It follows that 8 — gg(3,2m,0) is strictly monotone decreasing and

2 b
lim ,2m,0) = 400, lim 21 0) < —— +
5\:09E(5 ) e gE(ﬁ ) |U| Comin

< 0.

Thus there uniquely exists 8. € R. such that gg(f., 2m,0) = 0. Moreover

0< 2 n b
- |U| tanh(%emin)emin

or

6. < itanh_l <LU’) .

Emin 2€min

The following property is useful.

(1.17) For any (8,t) € Rug X R, 2+ gg(B,t,2) : Rsg — R is strictly monotone
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2
decreasing. Moreover, lim gg(5,t,2) = ——= < 0.
Z—00

U]
The claimed decreasing property can be confirmed by showing that

d 1 sinh(X) N 1 d_(sinh(X) <0
dX \ a+ cosh(X) X a + cosh(X) dX X ’

Va € [—1,1], X € R.,.

By (1.17)

gE(ﬂutv Z) < gE(57t7 0) < QE(B,Qﬂ',O) < gE(ﬁCu 27T7O) = O,
V(B,t, z) € (Be,00) X R x Rxo.

Thus the claim (i) holds.
If t # 27 (mod 47), A € R> and gg(f.,t,A) =0,

O = gE(ﬁcatv A) < gE(ﬁca 27T7 A) S gE(Bw 27T? 0) = O’

which is a contradiction. If t € R, A > 0 and gg(f.,t, A) =0,

0= gE(ﬁca t; A) < gE(ﬂca ta O) S gE(ﬁca 27T? 0) = 07

which is again a contradiction. Thus, if gr(f.,t,A) = 0 with (¢,A) € R x R,
t =27 (mod 4m) and A = 0. The converse is clear. The claim (ii) holds.
If 5 & (0, ),

gE(67 27T7 0) > gE(Bca 27T7 0) = Oa ZlggogE(Bv 27T7 Z) = _% <0.
These imply that there exists (¢, A) € R xRy such that gg(8,t, A) = 0. By (1.17)
such A is unique. By assumption gg (3, 7,0) < —ﬁ%—ﬁ < 0. Since gg(f,27,0) >
0, there uniquely exists 7(3) € (m, 2m) such that gg (5, d7(5) + 4mm,0) = 0 for any
d € {—1,1}, m € Z. This ensures the claim (iii).

One can deduce the first equality of (1.16) from the property (1.17). For any 5 €
0,8:), m € Z,t € (1(B)+4mn, —7(8)+4(m+1)7) gu(B,t,0) > gr(5,7(5),0) = 0.
Conversely let us assume that (5,¢) € Ry x R and gg(3,t,0) > 0. By (1.17)
there exists A € Ry such that gg(5,t,A) = 0. By (i), (ii) § < B.. Ift ¢
(1(8) + 4mm, —7(B) + 4(m + 1)7) for any m € Z, gg(5,t,0) < ge(8,7(8),0) = 0.
Contradiction. Thus there exists m € Z such that ¢ € (7(8) +4mm, —7(8) + 4(m +
1)m). The second equality of (1.16) is also proved. O

In order to ensure the existence of the critical inverse temperature [3., we always
deal with U € R satisfying |U| < 26% in this paper. The negative parameter U
controls the strength of attractive interaction. See (1.15). The sign of U matters in
the derivation of the gap equation from the many-electron system. In this paper,
however, the sign plays no essential role.

Concerning the function 7 : (0,5.) — (m,27), more detailed properties are
known.

Lemma 1.2. (/13, Lemma 2.2])



(i) T is real analytic in (0, B.).
(i)
lim 7(8) = lim 7(6) = 2.

B,/Be ANO
(iii)
.odr .odr
S %(6) = +oo, lim %(ﬁ) = —o0.

To state the rigorous version of the relation (1.5), we define the function A :
R.o X R — Rxq as follows. For (3,t) € Rog x R, if gr(8,¢,0) > 0, A(B,t)(€ Rsg)
is the unique solution to the gap equation. Otherwise A(f3,t) := 0. By (1.16)
the function A is well-defined. Then we define the function (5,t) — Fg(8,t) :
R.g x R — R by the right-hand side of (1.14) with A = A(f,t). In fact we do not
use the following lemma to prove the main results of this paper. We state it only
to understand the meaning of the sets analyzed as the main objects in this paper.

Lemma 1.3. Assume that U € (—26%"",0). Then the following equalities hold.
{(B,t) € Ryg x R | the function Fg is not analytic at (B,t)}

= {(5,t)) € Ryg x R | the function t — Fg(5,t) is not analytic at t = to}
U{(f., 2 +4mm) | m € Z}

= | [{(B.7(8) + 4mm), (B,-7(8) + 4(m + 1)7) | B € (0,Bc)} U {(Be, 27 + d7rm)}

meZ
For any subset S of R? S denotes its boundary in R2.

Proof. The 1st and the 2nd equality follows from [13, (2.3), Proposition 2.5]. The
3rd equality follows from (1.16) and Lemma 1.2. H

Remark 1.4. Since A(f,,t) = 0 for any t € R, t — Fg(f,.,t) is analytic in R.
This together with Lemma 1.3 implies that

{(B,to) € Ryg x R | the function t — Fg(f,t) is not analytic at ¢t = to}
= | [{(B8.7(8) +dmm), (8, =7(8) +4(m+1)m) | § € (0, 5.)}.

mEZ

Since DQPT is defined by non-analyticity of Fi(3,t) with the real time variable ¢,
the above equality characterizes the phase boundary of DQPT in the BCS model.

The above lemma suggests that the phase boundary is the disjoint union of
periodic copies of the representative simple curve

Co =A{(B,7(8)), (B, =7(B) +4m) | 5 € (0,58)} U{(Be, 2m)}-

To analyze the whole phase boundary, it suffices to focus on the function 7 :
(0,5.) — (m,2m). Moreover, Lemma 1.1 (iv) suggests that the domain of (/3,¢)
where the gap equation has a positive solution consists of periodic copies of the
representative set Sy defined by

SO = {(B,t) € IR>O xR | B < (07/30)7 te (T(ﬁ)v _T(B) +47T)}'
Observe that Cy = 05y NR<y x R. The set Sy is pictured in Figure 1.
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Figure 1: The representative set Sy and its boundary.

Remark 1.5. In [13, Proposition 2.4] we proved that CoU{ (0, 27)} is a 1-dimensional
real analytic submanifold of R2.

The main results of this paper concern convexity of the function 7(-) and the
set Sy. Specifically Proposition 1.6, Proposition 1.7, Proposition 1.8 and Theorem
1.11 are the main results.

Proposition 1.6. Assume that Cmin > 9—4v5. Then there exists Uy €
(O,—Slf&’;g;)b] such that for any U e [ UO,O), E € E(emin, €maz) and B € (0,5.)

%(5) > 0. Moreover

A>T A>T
lim — lim — .
dim g (B) = Foo. lm o5 (8) = Foc
The convexity of 7(-) does not always hold when 6”—" <9 — 4/5.

Proposition 1.7. Assume that &2 < /9 — 44/5. Then there exist Uy € (0, —2‘3’;)“'"),
E € E(emin, €maz) such that the followmg statement holds. For any U € [—Uy,0)

there exists B € (0, B.) such that gﬂg (B) < 0.

When g2z = /9 — 44/5, a slightly weaker conclusion holds. More precisely,
the choice of E depends on U.

Proposition 1.8. Assume that e::”‘ V9 — 45, Then there exists Uy €
(0,25%1'") such that the following statement holds. For any U € [=Uy,0) there

exist E € E(emin, €maz), B € (0,5.) such that gﬁg(ﬁ) < 0.

Remark 1.9. We should remark at this stage that the proof of Proposition 1.8
relies on exact calculations of low order terms of power series expansion of an
analytic function, which is the most complicated part in this paper. On the other
hand, Proposition 1.6, Proposition 1.7 can be proven more systematically.

We combine these propositions to characterize the convexity of the set Sy as
the main theorem. Let us confirm basic relations between the 2nd order derivative
of 7(+) and the convexity of Sy. Remind us that for any set S C R™ S is called
convex if sx1 4+ (1 — s)xy € S for any x;,x2 € S, s € [0,1].
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Lemma 1.10. (i) If %(ﬁ) > 0 for any B € (0, 5.), Sy is conver.

(it) If there exists B € (0, B.) such that %(6) <0, Sp is not conver.

Proof. (i): Take any (51,t1), (B2,t2) € Sp and s € [0,1]. By the assumption
T(sP1+ (1 = 8)B2) < s7(B1) + (1 — 8)7(B2) < st1 + (1 — s)ta,
Ar —7(sP1 + (1 — 8)B2) > s(dm — 7(B1)) + (1 — s)(4dm — 7(52)) > st1 + (1 — s)ta.

Thus s(f51,t1) + (1 — s)(B2, t2) € Sy. Therefore Sy is convex.
(ii): By the assumption there exist 81, B2 € (0, 5.), s € (0, 1) such that 7(sg; +
(1 —8)B2) > s7(fB1) + (1 — s)7(B2). We can choose small € > 0 so that

T(B;) +e<2m(j=1,2),
T(sP1+ (1 = 5)f2) > s(T(B1) + &) + (1 = s)(7(B2) + ).
Thus (8;,7(3;) + ) € So (j = 1,2) and
s(B1,7(B1) +€) + (1 = s)(B2, 7(B2) +€) & So.
Therefore Sy is not convex. ]

By combining Proposition 1.6, Proposition 1.7, Proposition 1.8 and Lemma
1.10 we can deduce the following theorem.

Theorem 1.11. For any d,b € N, basis (f/j)?zl of RY and emin, €maz € Rso
Satisfying €min < €maz the following statements are equivalent to each other.

(i) There exists Uy € (0, 262”’") such that for any U € [—Uy,0), E € E(emin, €maz)

and B € (0, 8.) $5(8) > 0.

(ii) There exists Uy € (0, 2222) such that for any U € [—~Uy,0) and E € E(emin, €mas)
So is conver.

(iii) €22 > /9 — 44/5.

Proof. The equivalence between (i) and (iii) follows from Proposition 1.6, Proposi-
tion 1.7 and Proposition 1.8. By Lemma 1.10 (i) the claim (i) implies the claim (ii).
If (iii) does not hold, by Proposition 1.7 and Proposition 1.8 for any Uy € (0, 26%)
there exist U € [—=Up,0), E € E(€min, €maz) and B € (0, B,) such that %(6) < 0.
Thus by Lemma 1.10 (ii) Sy is not convex, which means that (ii) does not hold.
Therefore (ii) implies (iii). The claims (i), (ii), (iii) are equivalent to each other. [J
Remark 1.12. The behavior of %(-) claimed in Proposition 1.6, Proposition 1.7
and Proposition 1.8 implies a physical property of the phase transition, which is
so-called reentrant phenomenon along a line drawn in the phase diagram. Mathe-
matically we define the reentry into the exterior from the interior as follows. Take
X1,Xs € Ry X R satisfying x; # X».

(EIE)(x1,x2) There exists € € R-( such that
A(sxy + (1 —s)x2) >0, Vs € (0,1),
A(sx;+ (1 —s)x2) =0, Vs € [—¢,0]U[1,1+¢].
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Similarly we define the reentry into the interior from the exterior as below.

(IEI)(x1,x2) There exists € € Ry such that
A(sx; + (1 —s)x2) =0, Vs € [0,1],
A(sxy + (1 —s)x2) >0, Vs € [—£,0) U (1,1 +¢].

Recalling the definition of the simple curve Cj, we can confirm the following.

o If ;%;(ﬁ) > 0 for any 5 € (0,0.), then for any x;,x € Cy with x; # X
(EIE)(x1,x2) holds.

o If 322 (8) < 0 for some g € (0, .), then for any § € R there exist x;,x3 € Cy

such that 0 < ||x; — xa||gz < 0 and (IEI)(x;, X2) holds.

Accordingly we can replace the conclusion “for any 3 € (0, 3,) ¢ dﬂg Z(8) > 0” by “for
any Xp,xs € Cp with x; # x2 (EIE)(x1,x2) holds.” in the statement of Prop051tion
1.6. Also we can replace the conclusion “there exists 8 € (0, 3.) such that jﬁg (B) <
0” by “for any § € Ry there exists x1,x2 € Cp such that 0 < [|x; — Xa||gz < ¢ and
(IEI)(x1,x2) holds.” in the statements of Proposition 1.7, Proposition 1.8.

Remark 1.13. We are analyzing the phase boundary where the function Fg loses
analyticity. However, it is not obvious if we can prove the derivation of Fg from
the many-electron system as stated in (1.14) together with the main results of this
paper. By considering the fact that ¢ € (0, 1] depends on the derivatives of E we
can deduce the following from Proposition 1.6 and Proposition 1.7.

o If z:—a*; > V9 —44/5, for any E € £ (€min, emar) there exists Uy € (0, m?ﬁlﬁ]
such that for any U € [-Up,0), 8 € (0, 3.) 4 dﬁg Z(B) > 0 and the equality (1.14)
is justified.

o If fmin < /9 — 44/5 there exist Uy € (0, @), E € E(emin, €maz) such that

for any U € [— UO,O) dﬁQ 2(B) < 0 for some g € (0,3.) and the equality (1.14)
is justified.

As we will see in Section 4, we have to choose E € E(emin,€mar) after fixing
U € [-Uy,0) in the proof of Proposition 1.8. It is not clear if the condition
(1.13) is satisfied in this situation. Therefore we cannot prove non-convexity of the

phase boundary in case that 6”;’; = /9 — 4v/5 as claimed in Proposition 1.8 while
justifying the equality (1.14).

Remark 1.14. In the preceding papers [13], [14] we had numerical examples show-
ing non-convexity of the function 7 : (0,5.) — R. The picture [13, Figure 2,
(b)] shows the graph of 7(-) having 2 local mininum points when 22 = l(<

max 7

9 — 4+/5). The pictures in [14, Figure 4] show that g—g(~) can be decreasing when
Emin — 1 1
emaz 83427 6.643(< 9 - 4\/5)

Remark 1.15. Here we can summarize the main results of [13, Section 2|, [14]
and this paper concerning the behavior of 7(-) more rigorously than in Subsection
1.1. Let P be a proposition and ¢, be a positive constant. We have been proving
the following statement.

For any d, b € N, basis (\A/j)?zl of R? and €,in, €maz € Rso satisfying emin < €maz
(i), (ii) are equivalent to each other.
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(i) There exists Uy € (0, 222i2) such that for any U € [~Uy,0), E € &(€min, €maz)
P holds.

(ii) Smm > ¢,

max

The proposition P and the constant ¢, are given as below.

e In [13, Theorem 2.19]

P : 7(-) has only one local minimum point in (0, 3.).

¢ =1\/17 — 12V/2.

e In [14, Theorem 1.8]

P : 7(-) has no stationary point of inflection in (0, 5,).

¢ =\ 17— 12V/2.

e In Theorem 1.11 of this paper

A>T

P: —
dp?

(8) > 0 for any 3 € (0, 5.).

Remark 1.16. In [13, Proposition 2.8] we proved that if ::—a’; > eg for some

eo € (0,1), 2%2(5) >0 for any U € [~ g2, 0), E € E(€min, €maa) and 5 € (0, Bc).

Since the proof was based on non-optimal estimations, we were unable to find
the optimal value of such eg there. Theorem 1.11 here presents an optimal value

9 — 44/5.

Remark 1.17. Some may be more accustomed to a graph with temperature than

inverse temperature. Here let us remark what we know on the behavior of the func-

tion T — 7(7) : (i,oo) — (m,27). Based on the equality -%(7(1)) = —%g—g(%)
and [13, Theorem 2.19], [14, Theorem 1.8], we can characterize uniqueness of a local

minimum point and non-existence of a stationary point of inflection by the constant
V17 — 12/2 in the same way as in Remark 1.15. Regardless of the value of fmin

the function T +— T(%) is not convex, i.e. dd—;Q(T(%)) < 0 for some T € (ﬁlc,oo),

This can be deduced from the properties that T(%) < 2m for any T € (Bi, o0) and

limr_ o0 T(%) = 2.

Remark 1.18. One basic assumption in this paper is the weak coupling condition
U| < 26% There are two reasons why we always assume this. Firstly, the
condition (1.13) under which the free energy density together with the gap equation
is rigorously derived in [13, Theorem 1.3] implies this inequality, and thus we can
interpret the main results Proposition 1.6, Proposition 1.7 as rigorous properties
of the infinite-volume limit of the microscopic model by assuming (1.13) from the
beginning. This is explained in Remark 1.13 in more detail. Secondly, under
this condition the phase boundary has universal properties as described in Lemma
1.1, Lemma 1.2 and Lemma 1.3. We have decided to focus on the analysis of these
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properties. It is possible to define the gap equation alone under the strong coupling
condition |U| > 26%”‘, though the derivation from the microscopic model cannot
be proved by the multi-scale analysis we have developed in this series. Under
the condition |U| > Qe%i" the phase boundary can radically change its geometric
properties, depending on the choice of E € E(emin, €mar). Here let us summarize
some of the basic provable properties by putting the issue of derivation aside.

For E € E(emin, €maz ), Set

2 1
.= —_—— 4+ D dkTr | ——— | .
e =g T / r<|E<k>\)

(oo}

Observe that g% = limg 5 ge(5,1,0) for any ¢ € R. While g < 0 for any
E € E(emin, €maz) if |U| < 26%1'", g% can change its sign, depending on the choice
of E € &E(emin, €maz), if |[U| > 26% There are three cases.

(Case 1) gy < 0.
(Case 2) gy = 0.
(Case 3) gy > 0.

For example if |U| = 26%”, 0<b <b,0 < emin < €maz and

_ eminIb’ 0
E= ( 0 emamIb—b’ ) ’

(Case 1) holds. If |U| = Ze%m, emin = €maz aNd E = eIy, (Case 2) holds. If
U] > Qe%i”, emin = €maz a0d F = e, [, (Case 3) holds. Here let us characterize
the set

D. ={(B,t) € Rog x R | there uniquely exists A € Ry such that gg(5,t,A) =0}

in a manner similar to Lemma 1.1 (iv).

e In (Case 1) there exists f. € Rsg and 7 : (0,8.) — (m,27) such that
limﬂ\o T(ﬁ) = 27T, limg/x/gc T(ﬁ) = 27T,

D. =
| [{(8.t) e Rog xR | B € (0,8.), t € (7(B) + 4mm, —7(8) + 4(m + 1)m)}.

meEZL
o In (Case 2) there exists 7 : Ry — (m, 2m) such that limg\ o 7(5) = 27,

Ds = | J{(B,t) € Rog x R | t € (7(B) + 4mam, —7(B) + 4(m + 1)7)}.

meZ

o In (Case 3) there exists f. € Ryg and 7 : (0,5.) — (0,27) such that
limg\ o 7(8) = 2, limg g, 7(3) = 0,
Do =
| [{(8,t) € Rog xR | B € (0,5), t € (7(8) + dmm, —7(B) + 4(m + 1)7)}

meEZ

U {8} x R\47Z L (5., 00) x R.
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In (Case 1) the situation is close to that under the condition |U] < 2ix. However
in (Case 2) the phase boundary exists for all 5 € R.g. Also in (Case 3) the gap
function A is positive for any (3,t) € (f., 00) x R. So the phase diagram is globally
different in these cases. Detailed analysis of them is open at present.

Remark 1.19. As we have already mentioned in Subsection 1.1, the characteristic
function of the work done in our many-body system by changing the Hamiltonian
H to H+S, is equal to (1.4). See [23] for the derivation. The work distribution
function is its Fourier transform. We note that

Tr(efﬁHefitHeit(HJrSz)) % it Tr, e PH
= e —
Tr e—AH ) Tre—AH
n=-—

where Tr,, e " denotes the trace of e ?" over the subspace
n
{ve FpABxT x {1,41) | S = Sv}.

This implies that the possible values of the work are § (n = —bL4, —bLA41, -+ DLY)
and the work distribution function Pp(-) is given by

PL(U))

_ 1 o I Tr(eBHeitHeit(H1S:))
A Tre—AH ’

—27
we {g |n=—bL% —bLi 41, ,de}.

Observe that

Tr, 9"
(1.18) P, (g) - % >0, Vn e {—bL4, —bL4 1+ 1, bL4Y,
re
bL? n
> Pu(z)-t
n=—bLd

Properties of work statistics after quantum quench have been studied in physics
literature (e.g. [21], [9], [1]). For example the letter [21] demonstrates via analysis
of Loschmidt echo that the work distribution function can diverge to infinity in
case of a local quench in a quantum Ising chain. Here let us derive one property of
our work distribution function from our previous results. Set

bL4

P00 5 (et (D) - e (2)
n=—bLd
so that

Tre—PH

It follows from [13, Theorem 1.3, Proposition 2.5 (ii)] that if U satisfies the condition
(1.13), P(B,L) > 0 for sufficiently large L € N, lim/_, ren 77 log P(3, L) exists,
B Mmoo Len ﬁ log P(B, L) is C'-class in Ry,

2 2

0 1 0 1
lim — lim —1 L), lim — lim —1 L
i g i alowPB.L). Juy 5 fim 7alos P51
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exist and

2 2

1 0 1
lim — lim —1 L) # lim —— lim —1 L).
o 5 7a s PU D F R g i ale PO L)

Though the physical interpretation might not be straightforward, this is a phe-
nomenon caused by the interaction. Infactif U = 0, 8 +— limy_,o ren ﬁ logP(B, L)
is real analytic in R.y. More generally we can deduce a jump discontinuity of

9 bL4

ot . 1 o n
o fm pates | 32 <R (3)

LeN n=—bLd

with g for any ¢t € R close to 27 from our previous results.

In [1], [9] the Gértner-Ellis theorem on large deviation principle was applied to
study the rate functions of work distribution functions. So we should report what
we can obtain by directly applying the Gartner-Ellis theorem to our model under
the weak coupling condition (1.13). Let B(R) denote the Borel algebra of R. For
L € N we define a function py, : B(R) — R by

bL

n
pL(B) = Z Ln enPyL <§) :

n=—bLd

We see that pp, is a probability measure on R. Moreover by (1.18) for any ¢ € R

bL4 _ _
Tr, e BH+tS, Ty e~ AH+S:

bLd
LAt tn n
s (o) — NOE _
/]R ‘ #i() Z A Z Tre—AH Tre—AH

n=—bLd n=—bL4

One can follow the early derivation of the free energy density of the BCS model [2,
Chapter 3] to derive that

1
1 —BH+tS,
(1.19) lim LdlogTre

LeN

= Dy / dk (Tr log (COSh (%) + cosh(ﬁE(k))) + Tr log(Qe’BE(k))) :

We should remark that since we assume (1.13), the corresponding gap equation

(1.20)

—1+Dd/ dkTr( sinh(8y/E(k)? + A2) )
s (cosh(3)

U] + cosh(By/E(k)? + A?))\/E(k)? + A?

does not have a positive solution. Indeed

2 1
the R.H.S of (1.20 S———i—D/ dk Tr | ———=
( A= g ( E<k>2+A2>
2 b
< =
< |U|+emin<0
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for any A € R>,. This is why the free energy density (1.19) is the same as that of
the non-interacting model. Therefore

(1.21)
.1 dyy Dy cosh(%) + cosh(BE(k))
lim 35 log </R e’ d“L(x)) =7 /& dk Tr log ( I+ cosh(BE(K)) ) !

LeN

which is real analytic with ¢ in R. Let us define the function Ag : R — R by the
right-hand side of (1.21). It follows from the Gértner-Ellis theorem (see, e.g., [4])

that for any u, v € [—3, 5] with u < v
bL?
(122)  Jim 1 1 P(B)] = Y 1o o (Ju, o))
. 1m — 10 Ny - = 1m — 10 u,v
e s Tz S ~ prd BHE

= — min r(z, f),
z€u,v]

where the function 7 : R x Ryg — R U {400} is the Legendre transform of Ag, i.e.

r(z, ) := sup(zt — Ag(t)).

teR

In fact we can characterize the function r(-) as follows. For any 8 € Ry

r(z,B) = +o0, Vo € (%,oo) ,

( ’B> lzd /1“;0 dk Trlog(2(1 + cosh(8E(k)))), r(0,8) =0,

0*r 11
axQ( 5)>O V.TE( 25),

g—;(x,ﬁ) <0, Vz € (—%,0) , %(0,5) =0, g—;(:c,ﬁ) >0, Vo € <0, %) .
Moreover, (z, 3) — r(z, ) is real analytic in (—3, 3) x R0, which means that the
rate function r(-,-) does not exhibit any singular behavior with the temperature.
Despite that DQPTs are triggered by the weak BCS interaction, the interaction
plays no role in the rate function. Thus the simple application of the Gartner-Ellis
theorem is unlikely to provide an interpretation of DQPT in terms of the work
distribution function.

2 Convexity of the phase boundary

In this section we prove Proposition 1.6. Let us begin by transforming %(6) into

a form without derivatives of 7(-). Take any E € &(emin, €maz). Define the function

o sinh(zE(k))
(21) Fle.y) = Da / e ((y n cosh(acE(k)))E(k)) |

Our proof is based on the following equality.
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Lemma 2.1. Let U € [—22iz ().

(2.2)
Proo 2(B)  (E(ByB)\’
= T (wa </3>>)

+ 12
(L —y(B)*)2Fy(B,y(B))?
(Faa (B, y(B) Fy(B,5(8))* = 2F.(8,y(B8)) Fy (8, y(8)) Fuy (B, y(8))
+Fyy(5ay(ﬁ)) ( ( )) )

for any B € (0, .), where y() = COS(T(B)), Fy(z,y) = %E(xz,y) and other partial
derivatives of F' are abbreviated similarly.

Proof. We can derive from the equality — = + F(3,4(3)) = 0 that

)
by FB.(B)
(23) 57 = TEB.y0)

Because y — F(x,y) : (—1,0) — R is monotonic, Fy(8,y(5)) # 0 for any 8 €
(0, B.). By substituting (2.3)

d
drp_ O 2 BBe)
dpb (1—y(®>):  (1—y(B>: F(By(0)
By differentiating both sides with £ and substituting (2.3) again we can obtain the
claimed equality. O

In the rest of this paper we often let y() denote cos(=> =B ) without any remark.
The next lemma means that for any €,,in, €maz satlsfymg 0 < émin < €maz, B €
(0, 5.) sufficiently close to 3. %(B) > 0.

Lemma 2.2. There exists M(emin,€maz) € Rso depending only on emin, €max

such that for any U € [—Sifl’g("g)b,O), E € E(eminsmaz), B € (0,8.) satisfying

5 Z M<6min7 emar) 1 + y(ﬁ)

TR0z (i)
6 (1 —f—y(ﬂ))? S111 ( emax/em'm)
Since limg g, y(8) = —1 by Lemma 1.2, we can deduce the following statement

from the above lemma.

Corollary 2.3. For any U € [—Siiﬂgg)b,(]), E € &(emin, €maz)

d*r
lim £7(8) = +oo.
dim g B) =+

From time to time we will need explicit forms of the partial derivatives of F'.
Let us list them here.

B 1+ ycosh(zE(k))
(24)  Fi(z,y) = Da /F dic ((y + Cosh(l’E(k)))Q) ’

oo}
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(2.5) Fy(z,y) = —Dq / dkTr( sinh(zE(k)) )

rs, (y + cosh(zE(k)))? E(k)
(26) Fru(z,y) = Dy /F KTy (E (k) Slnh(zg?zgzh (; é(cg’;(fﬂk» - 2)> ,
B cosh?(2E(k)) — y cosh(zE(k)) — 2
(2.7)  Fuy(z,y) = Dy /F’go dk Tr ( (y + cosh(zE(k)))? ) )

sinh(zE(k))
(2.8)  Fyylz,y) = 2Dy /FZ;O dk Tr ((y + cosh(xE(k)))SE(k)) .

We will use the following properties in the proof of Lemma 2.2. In fact these
were derived in the proof of [13, Proposition 2.8]. We show them again for readers’
convenience.

Lemma 2.4. Let U € [— siiﬁg)b’ 0). Then the following inequalities hold.

B, < 2

Emin
bsinh(2)|U
y(8) +1 < 2b@IU|

Emin

~y(B) > 5, VB € (0,6).

, VB € (0,5).

Proof. By Lemma 1.1

2 2 1 2
Be < tanh ™ Yl < tanh ™ , < tanh ! (tanh(1))
2€min emin 2sinh(2) Emin

Emin

2

Emin

It follows from the above inequality, the equality —ﬁ + F(B,y(B)) = 0 and the
property (1.17) that

2 < bsinh(Benin) < bsinh(2)
|U| N (y(ﬁ) + COSh(ﬁemin))emin o (y(ﬂ) + COSh(Bemin))emin’

or by the assumption

bsinh(2)|U 1
Y(B)+1 < (8) + cosh(Be) < "I 2
This implies the second and the third inequality. O

Proof of Lemma 2.2. Let us establish necessary inequalities by assuming that 5 >
M~y/1+y(B) with M € Ryy. We will tune M afterwards. It follows that

62
(2.9) —y(8) 21— 1.

By (2.4) and (2.9)

— Fo(B,y(8))
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(1 — B%/M?)cosh(BE(k)) — 1
> Dy /Foc dk Tr < (y(B) + cosh(BE(k)))? )

<52 i e ’”) D [ ((.y(@) ¥ cos1h<5E<k>>>2)

oo

2 f (2 hin = 378 Coswce’”“)) D /m ety ((y(ﬁ) ¥ cos1h<@E<k>>>2> |
By (2.5)

smh (Bemaz) 1
0<—F ————Dy dk T :
<R y) = Cmaz / ' ( )+ cosh(ﬂE(k)))2>
Thus by assuming that
1, 1
(2.10) 3Cmin = T2 cosh(Beemaz) >0

F.(B,y(8)) ’ Bemax 1 1 ’
e (FEU) =0 (s (G- oo )
> /32 ( Bcema:(; <162 o L COSh(ﬁ e )))2
- sinh(Beemaz) \2 ™" M? crmar '
To bound |F,.(8,y(5))|, observe that since y(/5) € (—1,0),

[y(8)? — y(8) cosh(Ba) — 2| = |(y(8) — 2)(y(8) + 1) + y(B)(1 — cosh(Ba))
< 3(y(8) + 1) + cosh(Ba) — 1 < 3(y(B) + cosh(Ba))

for any o € R. Therefore

E(k) sinh(BE(k))
(y(B) + cosh(BE(k)))?

|Fa (8, 9(8))| < 3D, /

=

oo

dk Tr ( ) < 3€l40 Fy (B, y(8))],

or

212 OB | <3

Moreover, since

(2.13)

1+ y(B) cosh(Ba)| = [1 +y(B) + y(B)(cosh(Ba) — 1)] <1+ y(B) + cosh(Bar) — 1
= y(B) + cosh(Ba)

for any o € R,

(2.14)

Fo(8,y(8))| < (y(8) + cosh(Bemar)) Da /F dic'Tr ((y@) n coslh(BE(k)))Q) ‘

]

Also,

(2.15) |Fy(8,y(8))] > BDq /F dk Tr ((y(@)ﬂoslh(ﬁE(k)))?)'
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To bound |F,,(8,y(5))|, we remark that for any oo € R

| cosh?(Bar) — y(B) coshi(Ba) 2
(cosh(Ba) — 1)? + 2(cosh(Ba) — 1) — 1 — y(8) cosh(Ba)]
|(cosh(Ba) — 1)? 4 2(cosh(Ba) — 1)| + y(B) + cosh(Ba)
(cosh(Bar) + y(B))(cosh(Bar) + 2).

In the 1st inequality we used (2.13). Thus

<
<

(2.16)

[Py (B, 9(8))] < (cosh(Beemaz) +2) Da / dic'Tr (W) n co;l(ﬁm)))?) |

]

By combining (2.14), (2.15), (2.16) with (2.9)

(2.17)
Fy(B,y(8))?

y(8)) ‘ < B72(y(B) + cosh(Bemaz)) (cosh(Beemaz) + 2)

< B2 (6—2 + cosh(Bemaz) — 1) (cosh(Beemaz) + 2)

( 1 cosh(Beemaz) —

< Ve + 52 1) (cosh(Beemaz) + 2).

One can deduce that

(2.18) IFyy(B,y(B))] < 2

y(B) + cosh(Bemin)
It follows from (2.14), (2.15), (2.18) and (2.9) that

[Fy(8,y(8))]

(2.19)
Fyy (B, y(B) Fa (B, y(B)*| _ 2 ( =(B,y(8 )))
EFy(B,y(8))? = y(B) + cosh(Bemin) \ Fy(8,y(8))
< 2(y(B) + cosh(Bemaz))? - 2(]@— + cosh(Bemaz) — 1)?
= B2(y(B) + cosh(Bemin)) = B2(cosh(Bemin) — 1)
<

4 1 cosh(Beemaz) — 1 2
M2 + 32 :

mln

By substituting (2.11), (2.12), (2.17), (2.19) into the right-hand side of (2.2) we
have that

s d?
(14 5(8))* 5 (8)
) ( Bebmaz (egm,n 1 )>2
(1- y(ﬂ))% P sinh(Bcemaz) 9 M2 cosh(Beemaz)
252 1 COSh(ﬁcemaaz) -1
STOIE (36727111:0 + 2 (W + 52 ) (cosh(Bemaz) + 2)

2
43 (]\;2+cosh(ﬁc;gm)—1) )

mzn
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Here we also used that

ay() 28
V1-y(B) ~ V1-y(B)M?

Then by assuming

e?m'n 1 Qemam
(220) T — W cosh ( — ) >0

and substituting the inequalities claimed in Lemma 2.4

(2.21)

(1+y(8)?

d*r

32
2 2 2
> b . 2emas Cmin _ Lcosh 2emas
2\/§ Emin Slnh(2€maa:/€min) 2 M2 Cmin
2 2 1 2 3 2 max 2 maxr
- % (363,1@3: +2 <W + ezm (cosh ( :mm > - 1>) (cosh < :min ) + 2)
4 1 6727”'71 2€max ?
e (e 5 (o (22) 1))

Note that (2.20) holds for sufficiently large M and implies (2.10). Moreover,
/B—IQ(R.H.S of (2.21)) is independent of 5 and

(8)

. 1 1 CmazCmin ?
lim — (R.H.S of (2.21)) = o <sinh >> .

M—oo 62 (26ma:v/6min

Thus we can choose M (€min, €maz) € Rso depending only on €,,in, €maq SO that the
claim of the lemma holds. [l

The inequality 5 > M(€min, €maz)\/1 + y(F) does not hold for small 5.

Lemma 2.5. For any E € E(emin, €maz), U € (_2&;1%70)

B

lim ———— = 0.
N0\ /1+y(B)
Proof. By (1.17)
7 (s Ly
i <0 | (T conaE0INEw) ~ 0T
Thus
lim b =0,
N0 y(B) + cosh(Bemar)
which implies the claim. O
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Remark 2.6. In the proof of [13, Lemma 2.2] we proved more precisely that

i Y8 +1 _ HU]
11m =
Ao 2

by a longer argument.

Therefore Lemma 2.2 does not prove the positivity of & dﬁQ 7(B) for small 5. We

must prove the positivity in case that 8 < M (€min, €maz)\/1 + y(5). In the rest
of this section we achieve this as follows. We show by scaling that the right-hand
side of (2.2) is close to a function independent of y(3), which proves to be positive

if fmim > \/9 — 44/5.
Let us construct the proof step by step. For z € Ry, y € (—1,0), F €
E(emin, €max) We set

2
(1-9)2((y+ D2 F,(Vy + Iz, y>/x>3<

—y((y + VE(y + 12,y))° 2y 1)z )5 F,(Vy + 1z,y)
F-y) (2 (—x(y§1>2F (Vytry (—<y u ”2Fy<¢mx,y>>

(2.22) Wg(z,y) =

y+1z,y)
—2((y + 1) F,(\/y + 12,9)) (-ij:fﬂvy+1%w>
Ay + 1)2Fy(Vy + 12,9))
+<QiiLEMv@17%w)(@+1WHVZIT%WY>)

ot

T

We can see from (2.2) that

B3? d’r B B
\/Ty(ﬂ)dﬁ2 (B) =W <—1 +y(ﬂ)’y(ﬁ)> , VB € (0,8.).

Since lim,~ o F,(v/y + 1x,y)/x converges to a non-zero value and

lim, 0 Fyy(vy + 1z,y) /2 converges in particular, lim,oWg(z,y) converges for
any y € (—1,0). Thus in the following we consider Wg(-, -) as a continuous function
on Rsg x (—1,0). For y € (—1,0) close to —1 Wg(x,y) can be approximated by
Wg(z) defined by

(2.24)

(2.23)

1
D¢ﬂ&dkTrC:?E&§>

Wp(z) = ’ (
V2(Da fy._dkTr (m»
1
4 (Dd /;0 dk Tr <<1 n f”_QE(k)Q)Q )
1 1
+ Dy /;;o dk Tr <W> Da /FOO dic Tr <(1 + §E(k)2)2>
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1 1
— 4D, /Fw dk Tr <—1 © %2E(k)2> Dy /Foo dk Tr ((1 " %2E<k)2)3> ) ,

We can consider Wi(-) as a continuous function on Rxg.
Lemma 2.7. For any r € Ry

lim sup  [Wg(z,y) — Wg(z)| = 0.
y\—1 z€[0,r]

Ec&(epin- emax)

Proof. For £ € & (€min, €maz) We define the functions F@  pw) pao)  ply)
FW) (e C(Rx)) by

Ho) () (1 -5EW)?
F¥(x):= Dd/F;odkT ((1+%2E(k)2)2>’

o (y — T 1
F()(x) = Dd/* dkT ((1+£E(k)2)2)’

[e'e]

F@2)(g) = Dd/ dk Tr <
rs,

F@Y)(z) = Dd/ dk Tr (
r

*
oo

(YY) (1) — r 2
FY) (x): Dd/rgodkT ((1+§E(k)2)3>'

By using (1.10), (1.11) we can prove that for any r € Ry

I{ml sup (y + 1) Fo(vy + 1z, y) — F¥(z)] =0,
Y\ — z€[0,r]
Eec&(epin emax)

1 -
lim sup %Fy(\/y + 1z,y) — FW(x)

y\—1 €[0,r]
Eec&(emin emax)

(1+ 5 B(k)2)?

S22E(k)?—1
(1+ZEk)2)3 )’

Njw

=0,

1 -
lim sup MFM(\/y + 1z,y) — F@) (z)

yN\—1 z€[0,r] 2

Ec&(emin emax)

lm sup [y + 1Py (Vi Lay) = P @) =0,
Y N— z€[0,r]
Ec&(emin emaz)

[

1)3 _
lim sup MFyy(\/y + 1z,y) — F@) ()| = 0.
y\—1 z€[0,7] X
E€&(emin emaz)
Since
~ b
[F® ()| 2

(1+%e2,,,)?
for any = € Rs¢ and E € E(emin, €maz), We can justify that for any r € R.g

lim sup  |Wg(z,y) — We(2)] =0,
y\(*l z€(0,r]

Ec&(epin- eman)
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where

(2.25)

Wg(z) =

1 (x 2 1(y
TaFoay (F @ PO

2 (2F6 () (B0 ()2 = 260 (2) PO (@) P (@) + B0 () (FO(2))?) ).
By setting

1
= Dy /F ik Tr ((1 - %QE(k)z)n) (neN)

oo

we have that

F@(2) = 2F, — Fy, FY(2) = —F,, F@)(2) = [, — 5F, + 4F,
F@)(z) = 3F, — 4Fy, FW () = 2F;.

By substituting these into the right-hand side of (2.25) we can derive that Wg(x) =
Wg(z) for x € Rsg, which completes the proof. O

Based on (2.23) and Lemma 2.7, we can partially achieve the goal.

Lemma 2.8. Let M (€min, €maz) be the (€min, €maz)-dependent constant introduced
in Lemma 2.2. Assume that
(2.26) inf Wg(z) > 0.

z€[0,M (e in emax)]
Ec&(emin emaz)

Then there exists Uy € (0, sn?ﬁ(ig)b] such that for any U € [—Uy,0), E € E(emin, €maz),

B € (0,3.) satisfying B < M(emin, €maz)\/1 + y(3)

d*t V1+y(B) = A
d—ﬁz(ﬁ)z 27 WE( 1+y(/3)>'

Proof. By Lemma 2.7 and the assumption there exists yo € (—1,0) such that for
any x € [07 M<€min> emax)]y Yy € (_17 yO]a E € g(emina emax)

(2.27) Walz,y) > %WE(;U).

By the 2nd inequality of Lemma 2.4 there exists Uy € (0, Sii’}*l‘(ig)b] such that for any

U € [-U,0), E € E(emin, €maz), B € (0,5:) y(B) € (—1,yo]. Combination of this
property with (2.23), (2.27) ensures the claim. ]

It remains to prove (2.26). Observe that for E € E(€min, €maz), m € N

D [
r

—-n

2 —n 2 d 2
dk Tr (1 + x—E(k)z) - (27r)_d/ dkTr [ 1+ 5B (S kv,
2 [O,27r]d 2 j=1
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—-n

d [N-1 d 2
. —d x? 2m R
= ]\}1_I>1’;ON L E Tr 1 -+ §E (W E 1 njvj>
J= J=

n;=0

Moreover for any N € N there exist M € N, (s;)}L, € R satisfying Z]]‘il s; =1,
(ej )j 1 S ]R>0 Satleylﬂg Emin S e <---<ey S Cmaz such that
d [N-1 2 oy 2\ " M 2\ "
7d ~ . -
VeI 2 ) 1+7E(W;”jw> =b2s ( 7° ) |
21 \nj= - o

For conciseness let us set

.:1},

= {(4)}L, e RY ]e <A<~ <Ay <e

min max}

for M € N and
M
Zs] 1+XA
7=1

for n € N, (s;))L, € S(M), (A;)}L, € A(M). We do not indicate the dependency
of G on X, M, (s;)}L,, (A;)}, for simplicity. By the definition (2.24)

(2.28) Wg(z) > inf inf inf G

2
MEN (s;)M  eS(M) (A;)M eA(M )XeR>0\/§ 3(40 TG0 — 4G

for any € R>g, E € E(€min, €maz). Thus it suffices to prove that the right-hand
side of (2.28) is positive. In fact we can prove the following.

Lemma 2.9. Assume that €2 > /9 — 4v/5. Then there exists a positive constant
¢ independent of any pammeter such that

C
inf inf inf inf —2(4C3 4+ C1Cy — 4C1Cy)
MEN (s;)M  eS(M) (A))M  eA(M) X€R>0 Cf

> ¢ <(::Z) —9+4¢5)

We need to construct tools to prove Lemma 2.9. To shorten subsequent formu-
las, let us set

1
2.29 B; = ———,
( ) 1+ A;X
1
(2.30) D;; = =(8B}B} + B;B} + B} B; — 4B;B} — 4B} B;)

2
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for A;; Aj € Ryg and X € Rxg. The following transformation of D; ; will be useful.
For any v € R

—~

2.31)

S

1

5BiBi(2y = (v = Bi) = (v = B;) —=4(y - Bi)? —4(y — B;)* +8(y — By)(y — By)).

Lemma 2.10. For any M € N, (s;)}, € S(M), (4;)}L, € A(M), X € Ry
(2.32) 403 + C1Cy — AC Cs = ((8;)111, (Dij)1<ij<nr (85) 500 g

where (-, Y is the canonical inner product of RM.

Proof. Observe that

4C3 + C1Cy — 40,C
M M
= sisj(4B}B} + BiB; — AB;B})

i=1 j=1

M M M
= Z $IBY+ ) 0 (Licj + Lisj)sis;(AB?B} + B;B} — 4B;B})

zlj—l

M
= Z 3+ ZZ Licjsisi2D; ; = Z 57Dy + ZZ Lizjsis;Di

=1 j=1 =1 j=1

_<( )] 17( Zj)lgi,jSM(Sj)in1>sz-
[

Let us prepare lemmas to find a lower bound on the right-hand side of (2.32).
We set for Ay, As € Ry

1 1
A+ A3
(2.33) a(Ay, Ay) = FLE22
A A3
We begin with the next lemma from which the critical constant 9 —4+/5 originates.

Lemma 2.11. Assume that 0 < A; < As.

1 1
(i) The function X — Bf — B3 : Ryg — R attains its maximum only at X =
a(Aq, As). Moreover,

1—(Ay/Ay)3
\/1 +(A1/Ar)} + (A/Ag)}

1 1
(i) The mazimum value maxxcg.,(Bf — B3 ) is strictly decreasing with ‘2—;.

(iii) maxxer,,(Bf — B3) =% if and only if Al =9 —44/5.
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Proof. (i): One can derive that

d

1 1
E(Bf — B3)

(1+ A4, X)2(1 4 A X)2 + AP (1 + A3X))
AZ(1+ A1 X)z + AP (1+ A, X)2)

(A3 —AD)(AS(1+ A X) + AP AS
2(14 A1 X)2 (1 + Ay X)2(
1 1 2 2
(A} + A3 - ATASX).
The claim follows from the above equality. The maximum value can be derived

directly.
(ii): One can deduce the claim from (i).

(iii): We can check that
1— (A/Ag)s 1
V14 (A/A2)} + (Ar/Az)}

2

it and only if ‘2—; =9 —4+/5. Thus by (i) the claim holds true.
We need to prove properties of B;, D; ; more.

Lemma 2.12. (i) For any Ay, Ay € Roq satisfying A1 < Ay, X € Ryg

1
Dl,l — D172 = 581(31 — BQ>(2Bl + Bz + 432(31 — Bg))

(i) For any Ay, As € Rog satisfying A1 < Ay, X € R
2 2 132 2 1 11 1 S |
Dr1Ds — Dy =4Bi By (Bi — By) (Bf + By + 5) (Bf mh 5)

1 1 1 1 1 1
~<§—Bf+B§) (Bf+B§—§).

(iii) For any Ay, Aa, A, Ay € Ry satisfying Ay < As < A3 < Ay, X € Ry

ByB3(B1 — By)(B1 — B3) >
Dy1Dy3— D15Dy3 > Dy1Dyy— D7 y).
1,123 1213 2 B2(Br — By)? (D11Dya 14)

(iv) Assume that 0 < A; < Ay and X € Ryy.
3B;
Do > Doyo i donlyif By — By < ———,
1,2 = 22 if and only if By 2 S 2(231+1)

(v) Assume that 0 < A; < Ay and X € R.y.
' ' 3B
Dy 9 < Dsy if and only if By — By > Q(QT:_D

(vi) Let Ay, As,--- Ay € Rog satisfy Ay < Ay < --- < Ay and X € Ry, If
Dy > Dy, then Dy gy > Dy > Dy for any m € {1,2,---, M}.
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(’UZZ) Let Ala A2 € R>0 Satisfy Al S Ag, f‘—; 2 9—4\/5 and X € Rzo. IfDQ,Q 2 DLQ’
there exists ¢ € R independent of any parameter such that

A 2
Di1Dyy — D?, > cBIB}(B; — By)? (A—l —9+ 4\/5> :
2

Proof. (i), (ii): These can be derived from the definitions. The equality (2.31) with
~v = B helps the derivations.

(iii): Observe that by using (2.31) with v = B; and the inequalities By > By >
By > By

D1,1D2,3 - D1,2D1,3
1
= ZB%BQBg(Bl — By)(By — Bs)

(=14 16B; — 4(B, — By) — 4(By — By) — 16(B, — Bs)(By — By))

1
> ZB%BQBg(Bl — Bo)(By — B3)(—1+16B;, — 8(B; — By) — 16(B; — By)?)

_ ByBy(Bi — By)(B1 — By)
B2(By — By)?

(D1,1D4,4 - Di4)-

(iv): When A; = Ay or X = 0, the claim is obvious. Assume that A; < A,
and X > 0. Using (2.31) with v = By, we can see that D; 5 > Dy, if and only if
(By + 2By)(By — By) — 4B1(By — By)? > 0. Since By — By > 0, this is equivalent
to By +2B; — 4B1(B1 — Bz) > 0, or By — Bz < 555 -

(v): The proof is parallel to the proof of (iv).

(vi): By the assumption and (iv) By — By < (Q%fBH which implies that
B, - B, < m for any m € {1,2,---,M}. Again by (iv) D1y > Dy >
Dy for any m € {1,2,--- M},

(vii): The claim is trivial when A; = Ay or X = 0. Let us assume that 4; < Ay
and X > 0. By Lemma 2.11 (i)

(2.34)
L gi_phs1_(gi_pi
5 - (Bl - BQ) > 5 (B — B3 )‘X:@(Al,z‘b)
3((3 + v5)/2 — (A1/A2)5)((A1/A2)5 — (3 — V/5)/2)

2%1 (A1/A2)} + (Ar/A2)} (14 (A1/A2)S + (A1/A)} +2(1 = (A1/A)h)

Ay 3-+5
- ((A—) E )
. A /Ay — (3= V5)/2)° A W
ATV ra v (a0 )
On the other hand, by (v) 2(2B; + 1)(By — Bs) > 3By, which 1mphes that 4B} >

4B? — 4B,By — 2B, > By. Thus By > 1 . Since the function x — 55 7 Ryo — R
Is increasing,

3Bl > 3x
(2B, +1) ~ 22z + 1)

1

B, — By, > -.

1 22 5 T
4
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By combining this inequality with Lemma 2.11 (i)

1 1 1 1 1 1— (A /A))3 1 1
t< B}~ B8]+ B)) < WAl (B} B
VIH (A A + (A/A)
Therefore
(2.35)

B +32 \/1 (A1/A2)5 + (A1/A5)5
: _

4(1 — (A1 /Az)5)
_ 3((3 + \/_)/2 — (A1/A2)3)((A1/A2)5 — (3 —V/5)/2)

401 = (Ar/A2) ) (1 + (Ar/A2)d + (Ar/A2)E +2(1 — (A1/A)))

Zc((ﬁ—;) —3_2‘/5> zc(ﬁ—;—9+4\/3>.

By combining (2.34), (2.35) with the equality derived in (ii) we obtain the claimed
inequality. O]

N —

We also need the following basic lemma.

Lemma 2.13. Let M € N>2, == (Clj)éwl, b = (b )M € R , a1 7é O bl = 0,

7=1
bj>0(j=2,---,M). Thenforanyx-(x]) ~1 €ERS Osatzsfymgz Lz =1

2 2 a2bz‘
b > .
<av X)]RM + < 7X>]RM = je{;l;ln M) ( — Gl) T b?

Proof. Let us define the function f : R%‘l — R by

flaa, - oy :=<a1+z - a)x ) (Zb%)Z.

The function f attains its global minimum. Indeed f(0) = a?, f(x) > a? for any
x = (z;)}L, € RY; " satisfying Z;\iQ bjz; > |a1|. Thus a global minimum point of
f(+) exists in the compact set

M
ij.fj S |CL1| } .
j=2

Observe that for any x = (:Bj)j]‘il € R% satisfying Zjle xj=1

{<xj>§£2 R

(2, %) gar + (b, X)gar = flw2, -+ 2u).

Thus it suffices to prove that for any M € N>

(Ineq(M))
a2b2-
min xX) > min ,
xeRM fx) 2 je{2,3, .M} (a; — al) + b?
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Va = (a;)M,, b= (bj)j]‘ile]RM satisfying a; # 0, by =0, b; >0 (j =2,--- , M).

7/j=D

Let us prove (Ineq(M)) by induction with M. If M = 2,

2 27,2
ai(az —a atb
1(a2 — a1) ) " 103

(ay — ap)? + b3 (ay — ap)? + b3

Fa) = (a2 — ar)? + ) (a: i
a2
~ (ag — a1)? + b3

for any o € R>g. Thus (Ineq(2)) holds. Assume that M > 3 and (Ineq(M — 1))
holds. Let us consider the case that

aj—aliaM—al

b, bar

J

 Vjef{2,3, - M—1}.

It follows that

M 2 M 2
f((xj)]]\/iQ) = (Ch + Wb—]\_/[al Z bj.ﬁCj) + <Z bjxj>
= =2

2b2
> . o 2 2y > a1%m .
= o = ae = vl = G v g,

In the last inequality we used (Ineq(2)). Thus the claimed inequality holds in this
case. Next we consider the case that there exists [ € {2,3,--- , M — 1} such that

“ps # Al Suppose that f(+) attains its minimum at ()L, € RY. Then
for m € {{, M}

1 of A — Q1

b a$m(($)g L) =2 b al"‘z j—a1)i +22bx1—0
Since ‘”gl“l oyl Z]{Q bjz; = 0, which is impossible. Thus f(-) attains its
global minimum in RgO_I\R%_l. Using the induction hypothesis,

min  f((2;)j1,) = min F((2)755)
(Ij)ﬁiQERgIJI ’ (%)?L2€R¥071\R¥071 ’
= min min flza, v xj1,0,2500, ,Ty)
JEL2 0 MY (29,0 zj g g, ﬂCM)ERJ;(;2 ’ ’

212 21.2
aiby - ayb;

min = min .
= jef2, M) ke{2, 3 M}\{]} (ar —a1)?+ by etz My (a5 —ar)? + b3

Thus the claimed inequality holds in this case, too. Thus (Ineq(M)) holds. By
induction (Ineq(M)) holds for any M € Nso, which completes the proof. O

With these tools we can find a lower bound on the right-hand side of (2.32).

Lemma 2.14. Assume that &2 > /9 — 4/5. Then there exists ¢ € Reg inde-

pendent of any parameter such that
M M s (A
((s5)j215 (Dig)i<ij<m(85)j=1)rm = By T -9+ 4\/_
for any M €N, (s;)7L, € S(M), (A;)}L, € A(M) and X € Rxy.
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Proof. For M € N, ¢ € Ry we set the proposition

(Prop(M, ) (5,021, (Dij)resjent (5L Do > €BY (j—M o4 4f)
V(s;)j21 € S(M), (AL, € A(M), X € Rxo.

When M =1,
M M 3 3 Al ?
((55)521, (Dij)i<ijem(85)j=1)pme = D11 = By > By, e 9+4v5

Thus (Prop(1,c¢)) holds for any ¢ € (0,1]. Assume that M > 2, ¢y € (0,1] and
(Prop(M — 1, ¢p)) holds. We temporarily assume that ;14—]\14 > 9 —4v/5and X > 0.
First let us consider the case that Dy py > Dy Lemma 2.12 (vi) ensures that
Dy, > Dy for any m € {1,--- , M }. By using this inequality and the induction
hypothesis
(51721, (Digr<igen(s))5i1 )
Dy e Dym

> <(Sj>j]\i17 (Di,j>2§i7jSM (Sj)jj\i1>RM

= Du,m (51 +2 Z 313]> (85722 (Dig)a<ijen(85)La) i

Z 5 —(Sj)jjvi% (Di7j)2§i7j§MM;(Sj)jj‘i2>RM—1
Z] 25j >

j=2 5]

> B}, 1—(§:sj>2 —I—COBM(;? 9+4f) (% )2

Jj=2 Jj=2

Ay

Next let us consider the case that Djy < Dy . In the following ¢; denotes a
generic positive constant independent of any parameter. By using Lemma 2.12
(iii), (vii), Lemma 2.13 and Lemma 2.12 (i) in this order

((s5)5L1, (Dij)1<igent (7)1 ) gar

M
=Dt +2) Dijsjst + ((85)10, (Dig)acigen (57) 1) gar—s

j72
—D1151+2ZD135381+ZD33 ]+2221l<lem515m
Jj=2 Jj=2 =2 m=2
1 M 2 M
- D_< (ZDl’j8j> + D (D1aDj; = Di)s)
1,1 , ’



M M
+ 2 Z Z Licm (D11 Dy — D1,1D1,m)818m>

=2 m=2
M 2 M B2 2
1 Z B;(B1 — B))
> D_< ( E DljS]> B2 Bl BM) <D1 1DMM D )

Ble — B))(By — Bn) 9
+2 Z Z Licm (B1 B )? (D1,1Dngve — Dl,M)Slsm

c M X A
1 2 P2

A 2
+2 Z Z Ly« B BiB,,,(B1 — By)(B1 — By,) (ﬁ -9+ 4\/5) Ssz)

=D <<(D1,j)jj\i17 (1)1 ) ans

. (BlBj(Bl ) ( jM e +4f>)1_2 <sj>§”:2>§w_1>

SR D} BiB3(By — B;)*(A1 /Ay — 9 4 4V/5)?
D1136{2 M} (Dll—D1]> B2B2<Bl— )2( 1/AM—9+4\/3)2
. D11 B{B?(By — B;)*(A1/Ay — 9+ 4V5)?
min
je{2 .M} BH( By — B-) + BIB?(By — B;j)*(A1/Ay — 9+ 4V5)?

Ay

> —

>

Here we remark that we used the assumptions i AL > 9 —44/5 and X > 0 to apply
Lemma 2.12 (iii), Lemma 2.13. Thus

. A ?
()10, (Dij)i<ig<nr(s;)jo0) g = min{co, e1} By, <ﬁ -9+ 4\/5>

for any (s;)3L, € S(M), (A;)}L, € A(M) satisfying A1 > 9 — 45 and X € Ry,.
Since the both sides of the above inequality are continuous with Ay, Ap;, X,
(Prop(M, min{cg,c1})) holds by taking the limit. It follows that if (Prop(M —
1,min{1,¢;})) holds, then (Prop(M,min{1,¢;})) holds. By induction with M
(Prop(M, min{1, ¢, })) holds for any M € N. The proof is complete. O

We are ready to prove Lemma 2.9.

Proof of Lemma 2.9. By Lemma 2.10 and Lemma 2.14

Cy Ci s (A
& CgB (AM—9+4f)

B4 Emin 2
>Cﬁ (<€maz> _9+4.\/g>

ZL4C2 + C1Cy — 4C1C) >
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2
, T+ AX N\ [/ emin)?
> f N — 4
_Cxlerﬁzo (1+AMX> ((emax) 9+4v5

—¢ (;14—;)6 ((2:”)2 —9+4\/5>2 > ¢(9 — 4/5)° ((2:")2 —9+4\/3)2.

]

Here we can prove the positivity of gﬁg (B) for small 5 as follows.

Lemma 2.15. Assume that £ > /9 — 44/5. Let M (emin, €maz) € Rsg be that
introduced in Lemma 2.2. Then “there exist c € R>0 independent of any parameter
and Uy € (0, z22i2—] such that for any U € [—Uy,0), E € E(emin, €maz); B € (0, 5e)

? sinh(2)b
satisfying B8 < M (€min, €maz) v/ 1 + y(B)

& 190 (( emin\ i
G L ((em) —9+4\/5>

Proof. Combination of Lemma 2.8, (2.28) and Lemma 2.9 yields the result. Here

we remark that the condition z2= > /9 — 44/5 is necessary to ensure that (2.26)
holds. [

Lemma 2.5 and Lemma 2.15 imply the following.

Corollary 2.16. Assume that &2 > /9 — 44/5. Then there exists Uy € (0, Sii}’f(ig)b]
such that for any U € [—Uy,0) and E € E(emin, €maz)

Wp g = oo
Finally we achieve the goal of this section.

Proof of Proposition 1.6. The claim follows from Lemma 2.2, Corollary 2.3, Lemma
2.15 and Corollary 2.16. [

3 Non-convexity of the phase boundary: non-
critical case

In this section we prove Proposition 1.7. Our proof is based on the relation (2.23)
and Lemma 2.7. It is essential to find £ € E(€min, €maz) such that the function
WE() takes a negative value. We begin by constructing basic properties which
we need to analyze the function Wg(-). Let us recall the notations (2.29), (2.30),
(2.33). Here we add more properties of D; ;.

Lemma 3.1. Let A;, Ay € Ry satisfy Ay < A,.
(i) Assume that ﬁ—; < 9—4+/5. Then D1 2] x=a(a,,44) < 0.

(ii) Assume that ‘2—; <9 —45. Then
(D11Dap — Di 5)lx=a(ar,40) < 0.
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(iii) Assume that 3—; <9 —45. Set

’Dl 2| L Dl,l
S9 =

§] 1= ’ Dy + |Dysl '
l)11 + |D12’ X=a(A1,A2) Dl,l + ‘DL?' X=a(A1,A2)

Then s1, s3 € (0,1), 51+ s2 =1 and

((85)521, (Dij)1<ij<al x=a(a1,40)(85) 721 )e < 0.

Proof. (i): By the assumption Lemma 2.11 implies that

1

J— 2 e
(Bf — B})|xa(anan) = Xﬂelﬂgfo(B - B

B o=

) >

l\DI»—t

We can deduce from (2.31) for D, 2 v = By that Dy, < 0 if and only if B; >
By+ 11+ IT32By). If Bf — B} > 1,

1
Bl>B2+B2+4>BQ+ 1+\/1+3232

and thus the claim holds. ) X
(ii): By the assumption and Lemma 2.11 3 — (B} — B3 )|x=a(a;,4,) < 0, and
1
thus B |x—a(a;,4,) > 3. By combining these inequalities with Lemma 2.12 (ii) we

can derive the claimed inequality.
(iii): By (i) s1, s2 € (0,1) and s; + so = 1. Observe that

(3.1)  ((s5)3-1, (Dij)i<igeal x=a(ai,0)(55) =1 )ge

—— (D151 + Dy 282) + =——(D11D25 — D%,2)

Dl 1 X=a(A1,A2)

X=a(A1,A2)

By (i) and the definition of si, sy the 1st term of the right-hand side of (3.1)
vanishes. By (ii) the 2nd term of the right-hand side of (3.1) is negative, which
concludes the proof. O

We will use the next lemma in the proof of Proposition 1.7.

Lemma 3.2. Set

2 2

esm'n + €hax
(3.2) 2o = , | 2Smin T Cmaz.

4

3 3
emzn ema:c

For any E € E(emin, €maz) there exists Uy € (0,26%1'”) such that the follow-
ing statement holds. For any U € [=U,,0) there exists Y € (—1,0) such that

VIF Va0 € (0,6,) and y(vT+ Vo) = ¥, where y(8) = cos(“L) for € (0, fo).
Proof. According to Lemma 1.1,

2 et (UL gy e (2 26min )
Cmin 2€min b

Thus there exists Uy € (0, 22) such that f. < zo for any U € [~Up,0). Fix
U € [-U,0). Since limg 5. /1 +y(5)/8 = 0 by Lemma 1.2 (ii), there exists

Be <

36



n € Rog such that /1 +y(8) < x—i for any 8 € [B. —n, ). Since B. < xq, there
exists Y € (—1,0) such that 1+ Yz € [B. —n, B.). It follows that

\/1+y(\/1+17x0) < —”1;”": V14V,
0

or

(3.3) y(V1+ }7:50) <Y.

On the other hand, by Lemma 2.5 limg~ o 3?/(14y(3)) = 0. Thus limy~,_; (1 +
Y)/(1+y(v/1+Yxy)) = 0. Therefore there exists Y € (—=1,Y) such that 1 +Y <

1+y(V1+Ya) or

(3.4) Y < y(\/1+ Y:cg).

By (3.3), (3.4) and the continuity of y(-) there exists ¥ e (Y,Y] such that

V1+Yxzy € (0,8.) and Y = y(v/1+ Ya). O

We need to construct E € E(€min, €maz) for which 7(-) is non-convex. As men-
tioned at the beginning of the section, we must show that Wy(-) takes a negative
value. We achieve this as follows. First we find a matrix-valued discontinuous
function E : ', — Mat (b, C) such that Wg_(-) takes a negative value. Then we
approximate Fy, by some E € E(€min, Emaz) SO that WE() has the desired property.

Remark 3.3. One question we expect here is why we do not try to establish the
same theorem without assuming the smoothness of one-particle Hamiltonian ma-
trix F if such an example is found in a non-smooth class. This is because we cannot
justify the derivation of our gap equation if we allow one-particle Hamiltonian ma-
trix to be discontinuous. Polynomial decay property of the free propagator with the
spatial variables, which is guaranteed by smoothness of one-particle Hamiltonian
matrix with the momentum variables, is essential in the derivation of the infinite-
volume limit [13, Theorem 1.3] via multi-scale analysis. However, it is possible to
reduce the smoothness condition to some continuous differentiability condition to
derive the infinite-volume limit as claimed in [13, Theorem 1.3]. We assume the
smoothness condition throughout for simplicity.

In the following until the proof of Proposition 1.7 we assume that <z <
V9 — 4+/5. Similarly to the definition in Lemma 3.1 (iii), we set

D12
3.5 5§ 1= —
(3:5) ! D11+ | Dyl

max

, Sg 1= 1-— S1.
Alzﬂgnin,AQZG'%nam,
X=a(A1,A2)

By Lemma 3.1 (i) sy, 82 € (0,1). Let us define the function ®,, : R — R by

1
Do (1, ) =4 Cmas if |z; — 7| < 7sd forall j € {1,---,d},
I emin  Otherwise.

Then we define E, : I'*, — Mat(b,C) by Ey (k) := ®u((V1,- -, Va) 'k)I,. Ob-
serve that for any continuous function f : R\{0} — C

(3.6) D, /F 0K T f(Eso(K)) = b(s1/ (Emin) + 52/ (€mar).

*
oo
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In the following we construct {Ep}per., C € (€min, €maz) such that E, approximates
E as p — 0o. Define the function ¢, € C*°(R) (p € R) by

1
¢p($) — exp ((Trsé/d)_zl’(l(xﬂ')?)pl + 1) lf |J,’ — 7T| < 71'857
0 otherwise.

Then we define ®, € C°(R?) (p € R) by

d
(Dp(xla T 7Id) = (emax - emin) H pr(l'j) + Emin-
j=1
Then we define E, : T*, — Mat(b,C) by E,(k) := ®,((V1,---,Vq) 'k)I,. Fi-

A ~

nally we define £, : RY — Mat(h,C) (p € Rsg) by E,(k) := E,(k), where
ke {(vi, -, vk |k €[0,27)¢} and k = k+2j:1 2mm;v; for some (m;)?_, € Z°.

7=1
Lemma 3.4. The following statements hold true.

(Z) { }p€R>0 C g(emma emax)

(i) For any continuous function f: R\{0} — C

I}Lm Dd/ dkTr f(E,(k)) = Dd/ dk Tr f(Fs(k)).

> % s

Remark 3.5. We have already proved similar lemmas [13, Lemma A.1], [14,
Lemma 2.9]. Though the previously constructed families of €(€,min, €mas) are differ-
ent from {E,},er.,, these lemmas are essentially applicable to prove Proposition
1.7 and Proposition 1.8. We present Lemma 3.4 in the belief that the construction
of {E,}per., is simpler and more suited for our present purposes. Also, containing

all the necessary lemmas must be convenient for the readers.

Proof of Lemma 3.4. (i): We only check the property (1.9), as the other properties
apparently hold. Take any k € R?. There exist (k; )9, € [0,2m)%, (my)d, € Z¢

such that k = ijl Vi + Zj:1 2mm;v;. Observe that

E,(—k) = E, (Z(Qw—k) >_q>( — k2 — k), = Bk, k)

= Ep(k)-

Here we used that ¢,(2m — k) = ¢,(k) for any k € R. Therefore (1.9) is satisfied.

(ii): Let f : R\{O} — C be a continuous function. For any k € I' there
exists (/’{:J)J_1 € [0,27]? such that k = Z k;v;. Since limy o ®,(k1, -, kq) =
(I)oo(klv T 7kd)7

(87 lim Tr f(Ey(k) = b lim f(Bp(kr, -+ ka)) = bf (Doc(hr, -+ Ka)
=Tr f(Fx(k)).

Also

(3.8) |Tr f(Ep(k))| <b  sup  [f(z)|

xre [(imin ,emaz}

for any p € R.o. By (3.7), (3.8) one can apply the dominated convergence theorem
in L'(T'%) to ensure the claimed convergence. O
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Here we can prove Proposition 1.7.

Proof of Proposition 1.7. Assume that &=z < /9 — 44/5. We define {E, } er., C
E(emins €maz); Foo : Ty — Mat (b, C) as We “did in front of Lemma 3.4. Though we
originally defined the functlon Wg(:) for E € E(emin, €maz), we can define Wy_(-)
by replacing E by E, in (2.24). Recalling the notational rule given in front of
Lemma 2.9 and (3.6), we see that with A; :=¢e2, Ay :=¢2 M =2

Cy
V2cs

min? max?

WEO@ (ac) = (402 + 0102 40103)

Moreover by Lemma 2.10

- Ch
Wg_(x
We define xy by (3.2). Since X = %3 = a(A;, As) and ’3—; < 9 —44/5, Lemma 3.1
(iii) guarantees that

<( )= (Dij)i<ig<a(85) 721 )po-

(3.9) W, (o) < 0.

We can apply Lemma 3.4 (ii) to deduce from (3.9) that there exists p € R such
that Wg, (x9) < 0. Moreover, by Lemma 2.7 there exists yo € (—1,0) such that

(3.10) W, (w0,y) <0, Yy € (=1, y0].

By the 2nd inequality of Lemma 2.4 for E, there exists U, € (0, 26%) such that
y(B) € (—1,yo] for all U € [-Uy,0), B € (0,5,). Lemma 3.2 ensures that by taking
Up smaller if necessary for any U € [—Up,0) there exists Y € (—1,0) such that

V1+Yzy € (0,8.) and y(vV1+Yag) =Y € (—1,90]. Set ' := 1+ Yuxy It

follows that y(8) € (—1,yo] and

W, (20,Y) = W, (\/H——Y’Y) W, ( 1 +y(5')’y(ﬁ )> |

Thus by (3.10)
g /
_— 0
Ep( 1+y(/8/)7y<6)>< )

which combined with (2.23) implies that jﬁg (8") < 0. This concludes the proof. [

4 Non-convexity of the phase boundary: critical
case

In this section we prove Proposition 1.8. We assume that ;’:—a’; = V9—-4V5
throughout this section. We want to show non-convexity of 7(-), which is the same
goal as in Section 3. However, there is an essential difference from the previous
construction. In the present case by (2.28) and Lemma 2.9 Wg(z) is non-negative
for any x € Rso, £ € E(€mins €maz). This means that the same argument as in
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Section 3 does not lead to the claimed result. Interestingly it will turn out that
Wg. (zo,y) < 0 for y € (—1,0) sufficiently close to —1. Based on this property and
(2.23), we can choose E € E(emin, €mazr) S0 that 7(-) is non-convex. The proof of
the negativity of Wg_(zo,y) is the most technical part in this paper. It requires
exact computation of the limit

o Wg,,
lim

Y1 ay] (.To, y)

for j = 0,1,2. We will perform the computation separately in Subsection 4.2.

4.1 Proof of the proposition

Let the family {E,},er.y C E(€min, €max) and Eo : I — Mat(b,C) be those
constructed in front of Lemma 3.4. We have to prove in advance that various objects
depending on £, converge as p — oo. Let the functions FP, F*° : R.ox(—1,0) - R
be defined by (2.1) with E = E,, E respectively. The equality (3.6) ensures the
well-definedness of F'>°. We define Wg_ : Ryy x (—=1,0) — R by (2.22) with
E = E. Tt is well-defined despite that Eo, ¢ E(emin, €maz). First we prove that
WEg, converges to Wk .

Lemma 4.1. For any closed bounded intervals J C Rsg, K C (—1,0)

lim sup |WEp(x,y) — Wg(z,y)| = 0.
p—o0 IE}{»
ye

Proof. Let FP| F>® (a = z,y, zx, Yy, yy) denote partial derivatives of the functions
F? F>. Recalling the explicit forms (2.4), (2.5), (2.6), (2.7), (2.8), we can apply
the dominated convergence theorem in L'(T% ) to prove that

lim sup [FY(v/y + 1z,y) — F.°(y + 1z,9)| =0

P30 zeJ
yeK

for a = x, y, xx, xy, yy, which implies the claimed convergence property. ]

We can define the function gg_ : Rop x R x R — R by (1.12) with £ = F.

For Ep S g(eminaemam) (p € IR>0) we write 66(]9)7 T(ﬂap) in place of 567 T(ﬁ) in
order to indicate the dependency on the parameter p. The following lemma shows
convergent properties of S.(p), 7(8,p) as p — ©.

Lemma 4.2. Assume that U € (—267%, 0). Then the following statements hold.

(i) There uniquely exists

2 b
Beoo € <O, tanh ! (|—U|>]
Cmin 2emin

such that gg. (Be.c0, 2m,0) = 0. Moreover lim,_,o 5.(p) = Be.oo-

(i) For any B € (0,Bcc0) there uniquely exists To(5) € (m,2m) such that gg,,
(8, To(3),0) = 0. Moreover the function B +— To(B) : (0, Becc) — R is real
analytic and

(4'1) lim T(ﬁ,p) = TOO(B): Vﬁ € (Oaﬁc,oo)a

p—00
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lim b =
M0 VT T cos(m (8)/2)

4.3 lim 7. (3) = 2.
43 o 7l8) = 27

(4.2)

Remark 4.3. By (i) for any 5 € (0, 8.) there exists py € R such that § €
(0, Be(p)) for any p > po. In (ii) we consider lim,_,o 7(5,p) as lim, e p>p, 7(5, D).

Proof of Lemma 4.2. (i): The unique existence of f3.  satisfying the claimed prop-
erties except for the convergent property is proved by the same argument as the
proof of Lemma 1.1. To prove the convergent property, suppose that limsup,,_, .,
Be(p) > Beoo- There exists € € Ry such that for any p; € R.g sup,s,, B.(p) >

Beoo + €. Take any p; € Ryg. There exists ¢ € [p1,00) such that 8.(¢q) > B0 + 5-
It follows that

9 1
= c ) ) T D dk
0= gg,(Bc(q),2m,0) U] . d/;o r (tanh(ﬂcT@Eq(k))Eq<k)>
9 1

—— + Dd/ dk TI'
U] . <tanh(5wT+€/23q(k))Eq(k)>

2 1
< — +supD/ dk Tr )
U1 " pom ™ Jrs (tanh(ME (k) E (k))

2 p p

<

By Lemma 3.4 (ii)

2 1
0 < —— 4+ limsup D / dk Tr
[y (tanh(ME (k))E (k))

2 p p

2 1
:——+D/ dk Tr
i (tanh(ﬁ““TwEoo(k))Eoo(k)

S dkTr( ! )
U . tanh(25= B (k) Ex (k)
= JE. (/86,007 27T7 0) - 07

which is a contradiction. Thus limsup, ., B:(p) < Beec. Suppose that liminf, .
Be(p) < Peoo. There exists € € Ry such that for any p, € Ry inf,>,, B:(p) <
Beoo—€'. Take any po € Ryg. There exists ¢’ € [ps, 00) such that 8.(¢") < Beoo— %’
Observe that

<! <
0= gEq/<5C(q,>: 2w, O) > 9E, (ﬁcoo — =2 O) > inf dE, (5000 — =, 2m 0)

p>p2

Lemma 3.4 (ii) ensures that

/ /
0> lirginngp (ﬁcoo — =2 0) = gg., (ﬁcoo — =2 0) > gp.. (Beoo, 2m,0) = 0,
p—00

which is again a contradiction. Therefore liminf, .., 8.(p) > B¢ 0. Summing up, we
obtain that limsup,, ., Bc(p) < Beoe < liminf, o B.(p), which implies the claimed
convergence.
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(ii): The same argument as the proof of Lemma 1.1 (iii) shows the unique
existence of 7..(8) € (m,2m). Since (8,t) — ggr_(5,t,0) : Rug x R — R is real
analytic and 895;” (B, 7To0(3),0) # 0 for all § € (0, o), the real analytic implicit
function theorem (e.g. [15, Theorem 2.3.5]) ensures that 7. (-) is real analytic in
(0, Beo). Take any 5 € (0, Beoo). Since limy, o Be(p) = P00, there exists p3 € R

such that 5 € (0, B.(p)) for any p > ps. Let us set

y(B,p) := cos (@) (P = P3); YoolB) = cos (%@)

for simplicity. Suppose that limsup, . y(8,p) > yso(8). There exists & € Ry
such that sup,s,, ¥(8,p) > Yo(B) + € for any py € [ps, 00). Take any py € [p3, 00).
There exists § € [p4, 00) such that y(5,q) > Yo (B) + % It follows that

~

0= 01,(5.7(6.0).0) <~ + 7 (.0(9) + 5 )

Ul >

0< —‘%' +li]£rf,ogpF” (5,?;00(6) + %) = —% + F (ﬁ,yoo(ﬂ) +

< 98.(8,7(5),0) = 0,

which is a contradiction. Thus limsup,, ., ¥(8,p) < Yso(). Suppose that liminf, .
Y(B,p) < Yso(B). There exists € € Rsg such that inf,>,, y(3,p) < yoo() — € for
any ps € [p3,00). Take any ps € [p3,00). There exists ¢ € [ps,00) such that
y(3,7) < yoo(B) — £. Observe that

[NCNIGN

<2 + sup F? (67yoo(6) +

N |U| P>p4

By arbitrariness of p, and Lemma 3.4 (ii)

[NCNIGN

0= 95,(8,7(8,4),0) = —% + F1 (B,yoo(ﬁ) - g)

2 g
> = 4 inf FP (B, y(8) — = | .
>~y ol (@y (8) 2)

Since ps is arbitrary, Lemma 3.4 (ii) ensures that

€ 9

2 =\ 2 _€
OZ—m—i—l;n_l)g.}fF (5;900(5)_5)_ |U|+F (B’yoo(ﬁ) 2)

> gEoo(ﬁaTOO(ﬁ>70) =0,

which is again a contradiction. Thus liminf, .. y(5,p) > Yy (). We obtained that

limsup y(8,p) < yoo(B) < liminf y(B, ),

pP—00
which implies that lim,_,o y(3,p) = Yoo(). Thus (4.1) holds.
The property (4.2) can be proved by exactly the same argument as the proof
of Lemma 2.5. The property (4.3) can be shown in the same way as [13, Lemma

2.2 (ii)]. However, we provide the proof of (4.3) for completeness. Suppose that
liminfs »5. . Too() < 2. Then there exists gy € R such that for any 5 € (0, 8. )
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infge 55, ) Too(B8) < 21 — &p. Take any B € (0,B00). There exists 5 € [B, Beoo)
such that Too(B') < 27 — %, which implies that

0= g (8, 7(8),0) < g (B2 = T,0) < sup gr (8,27~ 2,0).
2 BEIB.Be,00) 2

Since (3 is arbitrary,

0 < limsup g, (8,27 = 2,0) = g (Beoe 27 = 2,0) < g (Buoe, 27,0) = 0,
ﬁ/ﬁc,oo 2 2

which is a contradiction. Therefore liminfg 5. 7oo(8) > 27. Since limsupg oo
Too () < 27, (4.3) holds. C]

In the following let x, be that deﬁned in (3.2), B. be that introduced in

Lemma 4.2 (i) and y.(8) = cos(=5~ B)y (B € (0, Buoo)) With Too(+) introduced in
Lemma 4.2 (ii). We need to prepare an analogue of Lemma 3.2 with F...

Lemma 4.4. There exists Uy € (0, 22in) such that the following statement holds.
For any U € [=U,,0) there exists Y € (—1,0) such that /14 Yxy € (0, feo0) and
Yo (V1 +Yao) =Y.

Proof. By using (4.2), (4.3) in place of Lemma 2.5, Lemma 1.2 (ii) respectively we

can repeat an argument parallel to the proof of Lemma 3.2 to prove the statement.
Il

Proving the next lemma is the most complicated in this paper.

Lemma 4.5. Assume that = = /9 — 44/5. Then there exists yo € (—1,0) such
that Wg__(xo,y) < 0 for any y ' (—1, yo]-

Let us postpone the proof of the above lemma and show Proposition 1.8 here.

Proof of Proposition 1.8. Let yo € (—1,0) be that introduced in Lemma 4.5. For
any U € [—Sli’ﬁlg)b, 0), B € (0,Bc00) the same inequality as the 2nd inequality
of Lemma 2.4 holds with y..(8) in place of y(8). It follows that there exists
Uy € (0,2min) such that yoo(8) € (—1,40] for any U € [~Up,0), B € (0, Beoo)-
By choosing Uy smaller if necessary we can apply Lemma 4.4 to ensure that for
any U € [—Up,0) there exists Y € (—1,0) such that 1+ Yz, € (0,8.) and
Yoo(V1+ Y1) =Y € (—1,y0]. Let us fix U € [-Up,0). Set 8 := v/1+ Y.

Recalling the conclusion of Lemma 4.5,

_ oy _ s /
(4.4) 0> Wg, (20,Y) = Wg_ (—\/H—Y’Y) We,, <—1 n yoo(ﬂ/)’ym(ﬁ )) .

By Lemma 4.2 (i) 5’ € (0, B.(p)) for any sufficiently large p € R-,. Moreover by
Lemma 4.2 (ii)

(4.5) lim y(8',p) = Yo (B),

p—0o0
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where y(53,p) := cos(T(%p)) for 5 € (0, 5.(p)). We can deduce from Lemma 4.1 and

(4.5) that

g , B g :
Jlim W, <m79(5 ,p)> = Wg, ( : +ym(ﬁ/),yoo(5)) :

This coupled with (4.4) implies that there exists p € R such that 8’ € (0, 5.(p))

and
0> WEp Luy(ﬁxp) :
1+y(6,p)
Finally the above inequality and (2.23) ensure that jﬁg (8') <0 for E = E,. This
concludes the proof. O]

4.2 Negativity of the core function

It remains to prove Lemma 4.5. More strongly we will prove the next lemma, which
implies Lemma 4.5.

Lemma 4.6. Assume that &= = /9 — 4v/5. The function Wg__ (g, -) : (=1,0) —

R can be continued into a neighborhood ofy = —1 in R as a real analytic function.
If we let Wg_(xg,-) denote the continued function as well,
oW, 1 0*Wg, V2.5

WEoo (.%0, —1) = 0, (ZKQ, —1) = O,

2 Oy (0. =1) = =53
Remark 4.7. At present deducing from Lemma 4.6 is the only way to prove Lemma
4.5. We show Lemma 4.6 by long calculations, though we organize the process as
much as possible. Since these derivatives eventually take simple values, there may
be a nice mathematical structure leading to a substantially simpler proof. However,
we are unable to reveal it. In the following we should keep in mind that any single
miscalculation ruins the proof of Lemma 4.6. We add that based on (3.6), (4.6),
it is straightforward to write a code to compute the low order terms of Wg__ (zo, -)
numerically in PC.

Recall that the partial derivatives of the function F*° : Ryy x (—=1,0) — R
can be characterized as in (2.4), (2.5), (2.6), (2.7), (2.8). Moreover, Wg_ can be
written with the partial derivatives of F'* as in (2.22). To shorten subsequent
formulas, we define the functions G,, Gy, Gyy, Gay, Gyy 0 (—1,0) = R by

3

G.(y) = (y+ DEX(Vy + 1zo,y), Gy(y) := MF;‘)(\/Z/ + 1z, y),

Zo
Zo

Gaaly) == 5 (y + DEFE(Vy + 120,1), Gay(y) = (y + D2 F(/y + L20,y),
Gyy(y) == MF;;(V y + 1o, y).

Zo
We can see from (2.22) that
(4.6)
WEOO ([Eo, y) =
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(= yGe(W)?Gy(y) + (1 = 9)(2Gau () Gy (y)* — 2G(Y) Gy (y)Gay(y) + Gy ()G (y)?)).

Moreover we set for m,n € NU {0}

Com i= Dd/ dkTr( (%lzm(k)Q)m )
% (1+ 3 Eo(k)?)"

By (3.6)
2 2
Zo 62 m ﬁeZ m
Cm,n -} s ( 2 xmm) + 59 ( 2 max) ‘
(1 + 0 gnm)n (1 + maz)n

We are going to compute W, (xg,y) up to the 2nd order term of y + 1. Let us
proceed step by step.

Lemma 4.8. The functions G, Gy, Gyp, Gay, Gyy can be expanded into convergent
power series of y + 1 in a neighborhood of y = —1. Moreover, as y \, —1

C
Go(y) = —Co1 +2Ch2 + (% — —023 +Co1 — Cp 2) (y+1)+O((y + 1)2),
C C
Gy(ﬂ):—co,2+(—%+%> (y+1)
C2,2 2 C’4,4 2 3
+(—2,3_5+3_5cg,3 22.3)<y+1> £y + 1)),
Gm(y) = 01,2 - 22Cl )3
C. C 2
+< ;2—%——0234‘2034—012‘1'2013) (y+1)
Cs0 Csy  Csy 22 2 Coo 9
+(2.3.5 3 5043+ gty Ty 3ta +3023_C34)(y+1)
+O0((y+1)%),
Gay(y) = 3Ch2 — 22Co3 + (—Caz + 2Cs4 + Coq — 3Co2 + 2Co3)(y + 1)
C- C C
+(—3‘f’g+ =ty 034——045—ﬁ+023—024) (y+ 1>+ 0((y + 1)),

C 2 C
Gyy(y) = 2Ch 3 + (50173 - 02,4) (y+1)+ (ﬁ — 3034 + %) (y+ 1)
L0ty + 1)),

Remark 4.9. We will find that the 2nd order term of G,(y) is unnecessary to
prove Lemma 4.6. So we do not characterize it here for conciseness.

Proof of Lemma 4.8. For j € NU {0} let us set

N
R, Dd/ Ik Te (1 N cosh(vy + IzgEx(k)) 1) |
F*

y+1
' N
S = Dd/ Ik Tr sinh(v/y + 120 Ex (k)) (1 N cosh(v/y + 1zoEx (k)) 1) |
s VY + 1lzgEs (k) y+1
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S; = Dd/ dk Tr
T

*
[e’s}

. (fﬁ_ﬁ B ()2 SRy + 170 Fo (K)) (1 - cosh(v/y +Tzo B (K)) = 1>—ﬂ’) |

g Loelk) VU + 110E (k) y+1

We can derive from (2.4), (2.5), (2.6), (2.7), (2.8) with £ = E, that

(4.7) Go(y) = —Ri 4+ 2Ry + (R — Ro)(y + 1),

(4.8) Gy(y) = =52,

(4.9) Gua(y) = S2 — 455 + (=82 +255)(y + 1),

(4.10) Guy(y) = 3Ry — 4R35 + (R1 — 3Ry + 2R3)(y + 1),
(4.11) Gyy(y) = 253

We can see that R;, S;, S; (j € NU{0}) can be expanded into convergent power
series of y + 1 in a neighborhood of y = —1 and so can G, Gy, Gz, Gay, Gyy-

We want to characterize low order terms of R;, .S;, S'j. Let us prepare formulas
for this purpose. Let z € Ry, a € R\{0}, n € N. Set X := %2, A :=a®. Observe
that

( |, osh(vyF Twa) - 1)—"

y+1
2 42 343
1) =2

X
—(1+x4
(+ + 53

@+mﬁﬂﬁwxw+n%

X242
4 xA) 1 — (1
(1+X4) ( s xa Y
X343 X444
+ (- +
(2-32-5(1+XA) 22 321+ XA)

2>@+4V) Lol + 1)),

sinh(y/y + 1za) L+ X—A(y I X2A2 (y+1)2+0((y +1)°).

Vy+lza 3 2-3-5

By using the above equalities we obtain that

(1 N cosh(y/y + 1za) — 1) -

y+1
Sp— AN (y+1)
TI1+xXA 2.31+x42Y
X3A3 X4A4
_ 2 s
+( 2'32'5<1+XA)2+22'32(1+XA)3> (y+1)"+ 0y +1)°),
(1 . cosh(vy + Twa) - 1) -
y+1
B Lo (y+1)
Tt xA2 301+xap’
X343 X444 , ,
+(_32'5(1+XA)3+22-3(1+XA)4) (y+1)"+0((y +1)°),
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cosh(y/y + 1za) — 1) °
(1 + )

y+1
1 X2A2
RS VR T O EACRY
X3 A° XA
i (_2 3511 XA) 2301+ XA)5) (y+ 1)+ 0((y + 1)),
(4.12)
sinh(/y + Lza) (1 N cosh(y/y + 1za) — 1)2
Vy+ 1za y+1
1 XA X?2A?
B (1+XA)? + (3(1+XA)2 - 3(1~|—XA)3) (y+1)
( X2A2 2X3A3 X4A4 ) )
- + (y+1)
2.3-5(1+XA)2 3-5(1+XA)3  22.3(1+ XA)
+0((y +1)%),
(4.13)
sinh(y/y + 1za) ( cosh(y/y + 1za) — 1>_3
1+
VY + Tza y+1
1 XA X2A2
B (1+XA)3 i (3(1 +XAP 21 +XA)4> (y+1)
X2A2 X343 X4A4
(2~3-5(1—|—XA)3 T 51+ XA) - 2-3(1—|—XA)5) (y+1)*+0((y +1)%).

It follows that

C.
Ry =Co1 — ﬂ(y+ 1)

Csp Ciy3 9 5
2-3 + 2'32'5—1-22_32)(3;4—1) +0((y +1)°),
C
— - 1 _ ’ ’ 12 13
Ry = Cyp 3 (y+1)+ 32_5+22‘3>(y+ )2+ O0((y +1)°),
Coa

i ) (y+1)? + O((y + 1)),

C'22 2 044 2
i _ C 5 1
s 3 50ty ) W)

2.3.5 5 2.3
+0((y+1)%,
= Coo  Cs3 Cs.2 2 Cs.4 5
52_01,2+( s 3 (y+1)+ 5 3. F 3.5043+22_3)( +1)
+O0((y+1)%),
~ 023 034 CY33 CY44 C(55 2
_ o o 1 B : 1
53 Ol’3+(3 o )Wt D535 5 13 3)(+)

+0((y +1)°).

We can characterize Sy, S5 as above by multiplying both sides of (4.12), (4.13) by
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X A. By substituting the above equalities into (4.7), (4.8), (4.9), (4.10), (4.11) we
can derive the claimed equalities. O

Next we compute each low order term of G, Gy, Gy, Ggy, Gyy. To this end,
let us compute C,,, for all the necessary indices m, n as efficiently as possible.
The following relations help us do so.

Lemma 4.10. (i) For any m,n € N>y Cpp = Crm10-1 — Crn—1.0-
(ii) For any m,n € N withm > 2, n >3

5)
Cm,n = %Cm—ln—i’)-

Proof. (i): Use the equality 2™ = 2™ '(z + 1) — 2™ ! in the numerator of the
integrand.

(ii): Since (222 ‘[) =9 — 44/5,

(emzn)g_?)_\/5 <€mam>§ 3+\/5

(4.14) 5 ="

€maz Emin

Recalling the definition (3.2) and substituting (4.14), we can derive that
2 -1 N3 AN 3++5
emln em’LTL —"_ 5
4.15 1+ — =11 =
413 (14 Pe) ( () () ) s
22 -1 3 A
1 —"_ _emax — 1 —"_ emCL.fE + emax — 3 \/S.
2 €min €min 8

Moreover, these imply that

-2 2 -2 i
(4.16) (1 4+ 20 i ¢2 ) — M’ <1 4 P02 ax) _ T35

2 Cmin 32 2 ™ 32
LT N T 94, T 945
9 min 64 2 mar 64

Therefore

2
(xzo egmn)Q x% 2 - $(2) 2 - x(2) 2 - 5
(1+ :)30 o2 )3 I+ 2 Cmin -2 1+?6mm + |1+ 2 Cmin - ﬁ’

mzn

Similarly

(s _ 5
— 2 par o
(1+%e.) 2
These equalities ensure the claimed result. ]

We can achieve our purpose by using the values of (), ,, given in the next lemma.
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Lemma 4.11. Some of C,,,,/b (m,n € NU{0}) are computed as follows.

n=0ln=1|n=2|n=3 n=4 n=2>5
1 1 1
m=01 1 5% | % | %
7 3 1
_ 2
m=1 3 |\ 5% | % | %
5.13 | 52 5
m=2 % | % | 2
B 5.47| 32.5 5.7
m=3 95 26 29
B 52.17 | 52.13 53
m=4 26 29 1L
3.52.41 | 5247
m =5 29 11

Remark 4.12. Though it is technically possible to compute C,,,, for all m,n €
{0,1,---,5}, we present only those necessary for our purpose.

Proof of Lemma 4.11. We can see that once Cy,, (n =0, 1,2,3), C are obtained,
the rest can be derived by recursively applying the formulas proved in Lemma 4.10.
Let us explain how to compute Cy,, (n = 0,1,2,3), Cy. Recalling (2.33), we set

Ay =€, Ay =2 ., X = a(A;, Ay). Tt follows that 2—3 = a(A;, Ag). First

we need to compute s, so defined in (3.5). The terms B}", By* (m = 1,2, 3) have
already been obtained in (4.15), (4.16). By using them we have that

9445
64

1
DLZ - §BlBQ<SBlB2 + Bl + BQ - 43% - 4322) - —

Dy, =B} =
1
64’
which yield that

_5+2V5

_5-=2V5
N ’ 10

o1 10

52

We can combine these with the equalities $Co,, = s1B} + s2By (n = 0,1,2,3) to
obtain the claimed values. Moreover, by (4.15)

x2 x2
goefm —=5—2V/5, Eoe,%m =5+ 25,
and thus
1 2 2
501,0 = sl%efmn + 52%672mx =3
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By substituting the values presented in Lemma 4.11 into the formulas listed in
Lemma 4.8 we have the following.

Lemma 4.13. Asy \, —1,

LGaly) = —o3 + 55+ )+ O((y + 1)),

LGy (0) = s — e (1) o (1) Oy + 1)),
1Gualy) = 55 — 50+ 1) = o 17+ O((y + 1)),
%ny(y) - % 1 %(y +1)+ 2111—1_33(31 +1)2+0((y + 1)),
LG = o5 + g+ 1) — sy + 17 + O+ 1)),

Finally we can prove Lemma 4.6.

Proof of Lemma 4.6. The claim concerning the analytic continuation into a neigh-
borhood of y = —1 is implied by the equality (4.6), the initial statement of Lemma
4.8 and the fact Gy(—1) # 0. Let us compute Oth, 1st and 2nd order term in the
expansion of Wg__ (29, y) with respect to y + 1. Set for y € R close to —1

J(y) == — yGa(y)°Gy(y)
+ (1= 9) (2G2e(y)Gy(y)? = 2G.(y) Gy (y) Gay (y) + Gy ()G (y)?)

so that
(1.17) Wi (t0,) = —————J(y)
. Ex\Zo, Y 3 Y).
(1-9)2G,y(y)°
We will see that it suffices to compute J(—1), fl—;(—l), %%2](—1) to achieve our
goal. Set

G(y) = 2G4u(y)Gy(y)* — 2G4(y)Gy(y)Gay(y) + Gyy (1) Galy)®
for simplicity. Observe that
(4.18) J(y) = Go(y)’Gy(y) +2G(y) + (y + 1) ( — Gu(y)’Gy(y) — G(y))-

In the following for any smooth function f of y and j € NU {0} fU) denotes
L d]f( 1). By Lemma 4.13

]l dyJ
1 ~(0 1 1 2 0 1 0)\2 (0 1
(4.19) ﬁG( ) = 5L g(GagGy)( ) — @(Gx)) GO = i
Thus
1

1 _
SI0 = S ((G26,) 0 +2G0) =

Moreover, by using the Oth order terms and then the 1st order terms given in
Lemma 4.13

(4.20)

bga ® ( 2GL)(GIO? + 22GUGIGY — 26N GIGY) — 260 GG

20



—2G0VGPVGY + GG + 260 GOG))

11 0 L 0 . . 5.7
= (O - 0~ 50+ 500 = 5y
(4 21)
26 260GOGO 4 (o2eoy = L (Low Lom) Z 1
b3( ) b3( y+(:v) y)_b 2sx+28y - 99.3°
Substitution of (4.19), (4.20) (4.21) yields that
1 . .
s —JWw =3 ((GQG ) 4 26M — (G2G,) O - GO = 0.
Let us compute J2. By (4.18)
(4.22)
J@

= (GiGy)@) + 2(2(GmGg2/)(2) - 2(GwaGﬂcy)(2) + (nyGZ)@)) - (GiGy)(l) - é(1)~

Let us decompose each term with the superscript “(2)” in the right-hand side of
(4.22) by using the Oth order terms given in Lemma 4.13.

(4. 23)
1
bS(GQG ) = ﬁ(QGf)G;O)G;O) +(G)2GP + (GM)2GY + 260 G0GD)
1/1 1 1/ 1 1

(4.24)

1 2\(2 1 2 0) 2) 0 0 2

ﬁ(GmGy)( ) = b—g(Gmg(G; )2 +2G0GPGY 1260 GIGY + GO(GM)?)

1/1 1/ 1 1
=3 ﬁGxx G(Q)) [ <—§G(xlx)Gg(;l) + g(Gél)V) ,

(4.25)

1 2 1 2 0 0 0 2 0 0 0 2 1 0

ﬁ(Gxgnyy)( ) — %(Gg(c )G; )G( ) G( )Gz(/ )G( ) ng )Gz(/ )G;y) + ng )G;I)Gg(cy)

+ GGG + GGG
1 1 2) (2 (2)
=3 <‘ﬁGx - 3G + 568
1 1 1 1 1 1 1 1 1 1
+ 3 ﬁ(;; G — ﬁG; 'GQ) — ﬁeg )G,

(4.26)

1 1

ﬁ(nyGi)@) = = (GR(GV)? + 260 GP G0 +2G0) GG + GO (GM)?)

1 1 1 1 12
(28G — —G ) B ( GG 25(Gx))
By substituting (4.20), the 2nd equality of (4.21), (4.23), (4.24), (4.25),
(4.22)

(4. 27)

1 1 1
_1 ) @, Lo
Lo ; (28(} + 5 G - G+ 27ny)

Av

4.26) into

b3
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1 1 1 1 1 1 1) 1 1)\2 1 1
b2(25((;< 2 — 22(;;>G;> 2 —GHGY 23(G;>) +=GVGL)
1
+§G§1)Gmy G“)G )

28 Y 98 —IT 27 zy 27
1/1 1 1 1
Oz @ _ = Q) 4 = 1)

e (Y (Law - Sap+ fey - Law) - 1)
1 1 1 1 1 1 5-7
W (2 o) ) ) I

+bGy (b ( 22Gm+23Gy +22ny> 28) +215,3‘

We remark that G\ is canceled here. By applying Lemma 4.13 again we have that

1
b
1 1 1 1
(2 2 2 2)
(—G )+ =GB - G ¢ —G;y)
1

271
(Ist term of R.H.S of (4.27)) = oy
11-19
(2nd term of R.H.S of (4.27)) = DY
1
(3rd term of R.H.S of (4.27)) = o3 32
Therefore
1 ) 271 11-19 1 5.7 5°
b_3J :_217.3+ 217.3 +213-32 Jr215-3 T 216, 32

By combining the above results with (4.17) and the equality

T S +O(+ D)

we see that as y \, —1

1
Wg.(z0,y) = WJ(Q)(?J +1+0((y+1)%)
Yy
V2.5
This implies the results. O
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