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Abstract

In the BCS model with imaginary magnetic field at positive temperature
we provide necessary and sufficient conditions for existence of a higher order
phase transition driven by temperature. We define the order of the phase
transition by regularity of the extended free energy density with tempera-
ture. More precisely we prove the following. There exist a non-vanishing free
dispersion relation and a weak coupling constant such that a temperature-
driven phase transition of order n € 4N 4 2 (= {6,10,14,---}) occurs if
and only if the minimum of the magnitude of the free dispersion relation
over the maximum is less than or equal to the critical value v/17 — 12/2.
These statements are also proved to be equivalent to that there exist a non-
vanishing free dispersion relation and a weak coupling constant such that
the phase boundary varying with the inverse temperature has a stationary
point of inflection. Moreover, it follows that for any non-vanishing free dis-
persion relation and weak coupling constant the temperature-driven phase
transition is of 2nd order if and only if the minimum of the magnitude of the
free dispersion relation over the maximum is larger than /17 — 12v/2. We
apply some key lemmas established in Section 2 of [Y. Kashima, J. Math.
Sci. Univ. Tokyo 28 (2021), 399-556]. So this work is a continuation of the
section of the preceding paper. *

1 Introduction and main results

1.1 Introduction

The infinite-volume limit of the many-electron system governed by the Bardeen-
Cooper-Schrieffer (BCS) model with imaginary magnetic field can be explicitly
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derived for any positive temperature and weak coupling constant if the free dis-
persion relation is non-vanishing, as shown in the preceding work [25]. While the
temperature, the imaginary magnetic field and the coupling constant are largely
restricted in [23], where the free Fermi surface is non-degenerate, and in [24], where
the free Fermi surface is typically degenerate but non-empty, we have more freedom
to choose these parameters in the framework of [25]. In particular, if the coupling
constant is sufficiently small depending on the non-vanishing free dispersion rela-
tion, we can fully draw the phase boundary in the 2D plane of (inverse temperature,
imaginary magnetic field) and justify the derivation of the infinite-volume limit of
the free energy density at the same time. This means that we can reach a rigorous
conclusion on the phase transitions happening in the infinite-volume limit of the
many-electron system by means of mathematical analysis of the phase boundary.
This is what we aim for in this paper.

The imaginary magnetic field can be considered as the real time variable in
the context of dynamical quantum phase transition (DQPT). This fact motivates
us to establish fundamental properties of this unconventional BCS model. The
physical research on DQPT has been growing steadily since the proposal [18].
Let us summarize the formalism of DQPT to which our free energy density is
related. DQPT at zero temperature is defined as appearance of non-analyticity of
the function

) 1 i
(1.1) t— ]&13(1)0 Nlog (1o, € tH¢0>,

where H is a quantum many-body Hamiltonian, v, is a state vector and N denotes
the system size ([18], [15]). The quantity (1o, e~"4)y) is called the Loschmidt am-
plitude, which measures the overlap between the initial state and the state after
time-evolution. There have been attempts to generalize the concept to finite tem-
perature. When 1)y is the ground state of a Hamiltonian Hy, the finite-temperature
counterpart of the Loschmidt amplitude is

Tr(e—,BHoe—z'tH)
Tr e—PHo

(1.2)

with the inverse temperature 3(€ R.q). Accordingly DQPT at positive tempera-
ture is defined by non-analyticity of the function

1 T —BHy ,—itH
(1.3) t s lim Nlog( H(e e ))

N—oo Ty e—BHo

(see e.g. [3], [17], [31], [20], [19]). There is another approach to DQPT at positive
temperature. It is known ([37], [35]) that the characteristic function of the work
done in a quantum system where the initial Hamiltonian H, suddenly changes to
H, is given by

Tr(efﬁHo e*’itHoeitHl )

(1.4) Ty o—Fis

As pointed out in [35], (1.4) is also considered as a finite-temperature version of
the Loschmidt amplitude (1), e~ HoeH1y)y). In [1], [34], [33] there are explanations
about defining DQPT at positive temperature based on (1.4) in place of (1.2). Let
us explain how our model fits in these formalism. Let H denote the BCS model



and S, denote the z-component of the spin operator. The explicit definition will
be given in Subsection 1.2. In this paper we analyze the free energy density of the
BCS model with imaginary magnetic field

(1.5) lim (—ﬁLNlog(Tr e_BH”tSz)).

N—o0

Within the weak coupling regime of this paper no temperature-driven phase transi-
tion is signaled as singularity of the free energy density without imaginary magnetic
field

N—o0

lim (—BLN log(Tr eﬁH)) :

Thus the regularity of (1.5) with (8,¢) in R-o x R is the same as that of

" 1 ) Tr e~ AH+itS:
Nboo (_BN og( Tre—PH ))

Since S, commutes with H,

Tr 6—6H+z‘tSZ _ Tl“(e_ﬁHeitSZ) — Tr(e_ﬁHe_itHeit(H+Sz)).

We can see that analyzing (1.5) is linked to the study of DQPT at positive tem-
perature based on both (1.2) and (1.4). Jump discontinuity of the 2nd order time
derivative of (1.5) was shown in [25, Proposition 2.5 (iii)], which therefore implies a
DQPT in the BCS model at positive temperature. This phenomenon has not been
reported in other articles except for our previous work, to the best of the author’s
knowledge.

One main theme of the physical research on DQPT so far is the possible relation
between DQPT and equilibrium phase transition (EPT). In (1.1) with the ground
state vector 1y of a Hamiltonian Hy or in (1.3) the question is whether existence
of a DQPT is related to existence of an EPT in the systems governed by Hy, H.
One expected scenario is that a DQPT occurs if Hy and H are in mutually distinct
phases so that the quench from Hy to H crosses a critical point of EPT. In the
formulation (1.4) the quench is from Hy to H;. Thus the same question with H;
in place of H should be considered. As summarized in the review article [15],
there are many results indicating such correspondences between DQPT and EPT.
For example the article [3] shows that a DQPT occurs based on the formulation
(1.3) with the transverse-field Ising chain if the quench of the transverse magnetic
field crosses a quantum critical point, which is a critical point of EPT at zero
temperature. The article [17] presents a DQPT in the formulation of the type
(1.3) with the 2D massive Dirac model after quenching across a critical point of
topological phase transition. On the other hand, there are also many DQPTs
unrelated to EPT. For example the papers [2], [40] highlight occurrence of DQPTs
without crossing any EPT in quantum spin chains at zero temperature. As for
positive temperature, the paper [31] intends to present numerical results showing
DQPTs based on the formulation (1.3) for the fully connected transverse-field Ising
model, despite that the quench from Hy to H does not cross any equilibrium
critical point, in Appendix B. See the arXiv version of [31, Appendix B] for clean
presentation. As emphasized in [15], DQPT seems to be a critical phenomena
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which is not tightly connected with EPT in general. We know that DQPTs occur
in the formulation (1.4) when Hy is the weakly interacting BCS model H and
H, = H+ S, at high temperatures. We can deduce from the definition of DQPT
that the same conclusion holds for H; = H+6S, for any § € R\{0}. It is possible to
reconstruct the framework [23] to prove that if the BCS interaction is weak and the
temperature is high, H+ S, is in a trivial phase without U(1)-symmetry breaking
for any 8 € R. See Remark 1.14 for the technical details. In summary the DQPTs
occur despite that the quench from H to H 4 S, crosses no critical point of EPT.
As explained above, finding no clear relation between our DQPTs and the typical
EPTs in the BCS model is not discouraging. It is rather interesting that DQPTs
characterized by spontaneous U (1)-symmetry breaking occur at high temperatures
(see [25, Theorem 1.3]) where such an order cannot exist in the equilibrium case.

There is yet another definition of DQPT at positive temperature, based on the
fidelity between the initial thermal density operator p(0) and the density operator
p(t) after time evolution, where

o—itH o—BHo yitH
Tr e—AHo

with Hamiltonians Hy, H. The DQPT is defined as non-analyticity of the function

s Jim 4 toge (VA1 V70 )

See e.g. [33], [31], [34] for the definition. The fidelity version of DQPT in our
model is defined with

,teR

p(t) :=

efitSZ efﬁHeitSZ

Tre—PH

p(t) = , teR.

However, since H commutes with S,, p(t) = p(0) for all ¢ € R. This implies non-
existence of DQPT in the fidelity-based formulation. This is not an uncommon
scenario. The paper [20] features a couple of multi-band non-hopping models which
show DQPTs in the formulation (1.3) with finite § or in the infinite-temperature
limit B — 0, despite that the initial density operator is unchanged by quantum
quench, or in short p(t) = p(0) for any ¢ € R, and thus there is no DQPT in the
fidelity-based formulation. In general the finite-temperature Loschmidt amplitude
(1.2), (1.4) can be reformulated into the overlap between time-evolving pure states
via purification of the initial density operator. The paper [20] attempts to give
a physical interpretation to a thermal DQPT, where the initial thermal density
operator remains intact, by means of such transformations.

DQPT is not only a theoretical concept. A number of articles have already
presented the experimental observations at zero temperature, following the theo-
retical predictions. See e.g. [22], [11], which are also reviewed in [15, Section 4]. A
brief summary of experiments of DQPT is given in the recent paper [19]. Though
we do not find any experimental result treating temperature as a control parame-
ter of DQPT, the authors of [17] argue that their finite-temperature formalism of
DQPT reproduces the experimental observation of [11], because the experiment is
“unavoidably performed on mixed states”.

Here we add one remark that our notion of phase diagram is different from the
dynamical phase diagram defined in the physics literature (e.g. [46], [14], [31], [39]).
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Our phase diagram drawn in [25, Subsection 2.1] shows the boundary of a region
where the gap equation has a positive solution in the plane of (inverse temperature,
real time). On the other hand, the dynamical phase diagrams in [46], [14], [31],
[39] show boundaries of different regions in a plane of 2 parameters, which does not
include the real time variable. The 2 parameters plus the real time variable control
the dynamical analogue of free energy density whose singularity with the time
variable defines DQPT. The 2 parameters belong to the inside of the boundaries if
the DQPT occurs, i.e. the dynamical free energy density is non-analytic with the
time variable.

In [25, Section 2] we proved that the phase transition driven by the real time
variable is of 2nd order and that driven by the temperature is also of 2nd order
at most of the critical temperatures. Recall that we define the order of phase
transition in terms of regularity of the extended free energy density, which is an
analogy to the Ehrenfest classification. Moreover we gave a necessary and sufficient
condition for the representative phase boundary to have only one local minimum
point (LMiP). More precisely, the condition is that the minimum of the modulus
of the free dispersion relation over the maximum is larger than the critical value
V17 — 12¢/2. We did not relate the order of the phase transition to the uniqueness
of LMiP, though in [25, Remark 2.6] we mentioned a possibility of the temperature-
driven phase transition of higher order in case where the phase boundary has a
stationary point of inflection.

The main results of this paper are obtained by pursuing the question raised
in [25, Remark 2.6]. Admitting the free energy density of the BCS model with
imaginary magnetic field characterized in [25, Theorem 1.3 (ii)], we prove that we
can choose a non-vanishing free dispersion relation and a weak coupling constant
so that the system has a temperature-driven phase transition of order n for some
n € 4N+ 2 (= {6,10,14,--- }) if and only if the minimum of the modulus of the

free dispersion relation over the maximum is less than or equal to \/17 — 121/2.
We also prove equivalence between existence of a higher order phase transition
(HOPT) driven by temperature and existence of a stationary point of inflection
(SPI) on the phase boundary. It follows in particular that the temperature-driven
phase transition is of order n € 4N+ 2 if the critical inverse temperature is a SPI of
the phase boundary, it is of 2nd order otherwise. In the previous work [25] we were
unaware of the relation between the order of the phase transition and the critical

value v/17 — 12v/2. The essential new finding in this paper is that the universal

constant \/17 — 124/2 is also a critical value for existence of a HOPT driven by
temperature.

Once the equivalence between existence of a HOPT and existence of a SPI is
established, we focus on the problem of existence / non-existence of a SPI. Our
study on the uniqueness / non-uniqueness of a LMiP of the phase boundary in
[25, Section 2] essentially helps us in this part. The proof of uniqueness of LMiP
is technically close to the proof of non-existence of SPI. Specifically, we apply [25,
Lemma 2.12] as the key lemma. When there are 2 LMiPs on the phase boundary,
we can continuously transform the free dispersion relation until one of the LMiPs
disappears. In the middle of this process a SPI appears on the phase boundary.
This is how we prove the existence of a SPT and thus a HOPT. We remark that [25,
Lemma 2.15] plays a key role in the proof of the existence in a critical case. After
proving the main theorems we study specific models in terms of SPI and HOPT.



There we also apply [25, Lemma 2.24] and admit the proof of [25, Proposition 2.26].

The critical value v/17 — 12v/2, whose original meaning is a root of the polynomial
X*—34X?%+1, is already involved in [25, Lemma 2.12], [25, Lemma 2.15] and [25,
Lemma 2.24]. This work can certainly be seen as a continuation of [25, Section 2]
from the technical viewpoint.

As explained in the beginning, the main reason for focusing on non-vanishing
free dispersion relations is that the derivation of the free energy density is justified
for wide range of parameters. It is encouraging that this class of free dispersion re-
lations cover benchmark models showing DQPTs at positive temperature, namely
Fermionic Hamiltonians for topological insulator. Let Hy, H be gapped Hamiltoni-
ans with different ground state topology in (1.3). It has been vigorously studied if
such a system exhibits DQPT in recent years. Though the benchmark models are
spinless, they can be written with single-particle Hamiltonian matrices belonging
to our class. They are e.g. the Haldane model (2-dimensional, 2-band, [13], [17]),
the Su-Schrieffer-Heeger (SSH) model (1-dimensional, 2-band, [36], [19]). Though
it is related to DQPT at zero temperature, the paper [32] introduced a multi-band
version of the SSH model, which belongs to our class as well. We will show how
to construct the Haldane model and the SSH model in Remark 1.2 as concrete
examples of our free Hamiltonian.

No physical interpretation has been given to non-analyticity of the functions

) 1 Tr(e—BHoe—itH) ) 1 Tr(e—,BHo e—z’tHo eitHl )
fr 1\}1—I>Icl>o N log ( Tr e=AHo ) i ]\P—IE;O N log ( Tr e~FHo >
in the context of DQPT as far as the author knows. Therefore, what this paper
presents as the main results are novel mathematical properties of the BCS model,
rather than physical properties which can be immediately interpreted in terms of
DQPT at present. One interesting aspect of our DQPT is that the dynamical
free energy density (1.5) is equal to the minimum of a function whose minimizer
is the order parameter solving the gap equation. It is actually written as the
right-hand side of (1.7). Whether one can construct an analogue of the Landau
theory of EPT in the context of DQPT is posed in [16] as one open question. The
paper [38] presents such a trial in the transverse-field Ising chain. Since there is
a notable structural resemblance to the conventional macroscopic theory of EPT,
it is a natural mathematical interest to pursue the analogy by studying the degree
of non-analyticity of our free energy density with 8. Concerning the conventional
BCS model without imaginary magnetic field, it is a general consensus that the
temperature-driven transition between superconducting / normal phase is of 2nd
order. Despite that there are many mathematical papers studying the BCS theory
(see e.g. the review articles [12], [4]), it seems that only a few have tried to prove
the order of the phase transition. There are mathematical constructions toward the
2nd order phase transition in a BCS-type thermodynamic potential by Watanabe

([41], [42], [43), [44], [45)).

We find more articles related to the present paper’s theme, namely HOPT
in superconductors, in physics literature. Cronstréom and Noga [5] obtained a
mean field solution to the BCS model in thin films and a layered structure, which
shows a 3rd order superconducting phase transition. There are attempts to explain
experimentally observed anomalous superconducting phase transitions in terms of
HOPT, especially of 3rd / 4th order, by extending the phenomenological Ginzburg-
Landau theory. Kumar and the coauthors ([27], [29], [30], [28], [10]) initiated this
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approach. Later Ekuma and the coauthors ([6], [7], [9], [8]) continued in this line of
research, aiming in particular to explain a 3rd order phase transition in iron-based
superconductors.

This paper is organized as follows. In the rest of this section we prepare neces-
sary concepts and state the main results of this paper. In Section 2 we prove the
main theorems step by step by establishing various propositions ranging from the
equivalence between HOPT and SPI to existence / non-existence of a SPI. In Sec-
tion 3 we study whether HOPT is possible in multi-orbital non-hopping models and
a one-dimensional nearest-neighbor hopping model. These are the same models as
those analyzed in [25, Subsection 2.3] with regard to uniqueness / non-uniqueness
of a LMiP of the phase boundary.

1.2 The main results

We keep using many of the notations introduced in [25, Section 1, Section 2|. Let us
reintroduce the important ones for clarity of the present paper. With the dimension
d € Nlet (v;)9_, denote a basis of R?. Define the subset I';, of R? by

d
FZO = {Z Aj\A/'j

Originally the set I'% is the continuum limit of a finite momentum lattice spanned

by (\7]-)?:1, which is denoted by I'* below. Take b € N and €5, €maz € Rsq satisfy-

g €min < €maz- The set E(€min, €mas) of one-particle Hamiltonians in momentum
space is defined as follows. E € E(€min, €maz) if and only if

E € C~(R% Mat(b, C)),
E(k) = E(k)*, Yk € RY,
E(k+2nv;) = E(k), Vk € R? je{l,---,d},

kiel0,27] G =1,--- ,d)}.

(1.6) E(k) = E(—k), Vk € R,
Jnf -~ inf - [E(k)ulles = emin(> 0),

with HuHCbzl

sup || E(K)|loxb = €maz-

keRd
Here Mat(b, C) is the complex Banach space of b x b complex matrices equipped
with the operator norm || - [[yxp. Also, || - [|cv denotes the canonical norm of C°
induced by the Hermitian inner product.

Some of the properties assumed in &(€emin, €max) Will not be used in this paper at
all. For example, we do not need to assume that k — F/(k) is infinitely differentiable
and (1.6) to complete the proofs of the main results. We keep these conditions in
this paper in order to emphasize that the free energy density analyzed in this paper
is the same as that rigorously derived in [25, Theorem 1.3 (ii)] by assuming these
conditions.

Our main theorems concern the free energy density which explicitly involves the
solution A to the gap equation. Therefore we have to introduce the gap equation
in advance. For E € &(emin, €mae) the function gg : Rog X R X R — R is defined
by

ge(z,t, 2)



sinh(z+/E (k)% 4 22)
=———+Dy dk Tr ,
U] s (cos(t/2) + cosh(z+/E(k)? + 22))y/E(k)? + 22
Dy := |det(¥y, -, vg)|H(2m) ™4
The parameter U is real, negative and called coupling constant. Remind us that
for any function f : R\{0} — C and k € R? f(F(k))(€ Mat(b,C)) is defined via

the spectral decomposition of F(k). The next lemma is essentially the same as [25,
Lemma 1.1].

Lemma 1.1. The following statements hold for any (B,t) € RogxR. The equation
ge(B,t,A) =0 has a solution A in [0,00) if and only if ge(5,t,0) > 0. Moreover,
if a solution exists in [0,00), it is unique.

This lemma enables us to define the function A : R.g xR — R as follows. For
(B,t) € Rugx R, if gp(B3,t,0) > 0,let A(B,t) € Rxq be such that gp(8,t, A(B,t)) =
0. If gp(B,t,0) <0, let A(pB,t) := 0. Observe that

A(B,t) = A(B,0t +4mm), Y(5,t) € Ryg x R, § € {1,—1}, m € Z.
Moreover, we define the function Fg : Ryyg x R — R by

(1.7)

_A(B1)? Dy t\ -8B
Fr(5,t) == 7] —F/FéodkTrlog 2 cos 5 )¢

4 PVERFAFNI-EK) e6<\/E<k>2+A<6,t>2+E<k>>) ‘

We can see that
(1.8) Fr(B,t) = Fg(B,dt + 4mm), Y(B,t) € Rog xR, 6 € {1,—1}, m € Z.

According to [25, Theorem 1.3 (ii)], for any E € E(emin, €maz) there exists ¢ € (0, 1]
such that for any § € Ryg, t € R,

2¢ . d+1
(1.9) U e —Tmm{emm,emm},o :

L—o0
LeN

. 1 s
Fg(B,t) = lim (_ng (Tre BH+ tsz)>7

where ¢ depends only on d, b, (f/j)?zl and the quantity

d om;

— 1
115

bxb

(1.10) sup sup
keRd m;€NU{0}
(j:17.,. ,d)

E(k) >4 my<d+2

For any proposition P 1p := 1 if P is true, 1p := 0 otherwise. The operator H is the
BCS model with the reduced quartic interaction and the one-particle Hamiltonian
E(), and S, is the z-component of the spin operator. The negative parameter U
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controls the strength of attractive interaction between Cooper pairs in the BCS
model H. More precisely,

1
H:= d Z Z Z bk k) (p, )wpxow"y"

(p:x),(n,y)€BXT oe{1,)} kel™

U gk
+ ﬁ Z (0 px¢¢px¢¢ny¢¢ny%

(p,x),(n,y)EBXT

Z (@Z);xﬁbpﬁ - ¢;x¢¢pxo:
(p,x)eBXT

where B :={1,2,--- ,b},

d
I':= {Z m;v;

ij{Ql,---,L—l} (j:L’d)}’
j=1

d
n . 2 A4rw 27 )
:{ijvj ij{O,f,f,---,Qﬂ—f} (jZl,---,d)},
j=1

(v;)9, is a basis of R?, dual to (v;)9-, and for (p,x,0) € BXT x {1, |} Ypxo (¥, )
is the annihilation (creatlon) operator on the Fermionic Fock space Fy(L*(B x T x
{1,4})). The Fermionic operators appear only in this section. As we want to
relate the present construction to the original definitions, U is taken as a negative
parameter throughout this paper even though we essentially deal with |U| in every
estimate.

Here we remark for clarity that [25, Theorem 1.3] is claimed for ¢t = — 36 with
any 6 € R. The arbitrariness of 6 ensures that [25, Theorem 1.3 (ii)] is equivalent
to the above statement.

Remark 1.2. We can formulate various free Hamiltonians into the form

1
0 2 2 I NEW) ()Y Yy

(p,x),(n,y)EBXT oe{t,1} kel

with E € E(emin, €maz). The most standard one is the nearest-neighbor hopping
model on the (hyper-)cubic lattice

(1.11) E(k) :QZcoskj —u, keR?

with o € R\[—2d,2d]. In this case b =1, (v;)_,, (V;)7_, are the canonical bases of
R? and ey, = || — 2d(> 0), €masr = 11| +2d. In the following we present a couple
of benchmark models studied in the context of DQPT at finite temperature. We
note, however, that these models are supposed to describe spinless Fermions in the
papers we refer to.

The Su-Schrieffer-Heeger (SSH) model The SSH model describes a
1-dimensional, 2-band insulator. It was originally proposed as a model of



NH)
(1, 2) (1,2 + 1)

Figure 1: The lattice for the SSH model.

polyacetylene ([36]). It was analyzed in [19] to display DQPT at finite tem-
perature. To formulate the model, we set b = 2. The spatial lattice is iden-
tified as {1,2} x Z. In our finite-volume formulation I' = {0,1,--- , L — 1},
I*={0,2%,.-- ,25(L — 1)}. The lattice linked by the nearest-neighbor hop-
ping is pictured in Figure 1.

The corresponding one-particle Hamiltonian matrix F is defined by

. 0 Ji+ Jze_ik
E(k)_(J1+J2ezk: 0 ),kER,

where Jp, Jo(€ R) are hopping amplitude. Set

F(k) = T+ 2cos ki + T
for k € R. Since the eigenvalues of E(k) are +f(k),

inf jlgclfz 1E(R)ulle2 = min f(k) = ||| = | ]|
with |[u C2:1

sup | E(k)||2x2 = max f(k) =[] + [ 2]
keR keR

Thus if |J1| 7£ |J2|7 E e E(emm,emw) with Emin — ||J1| - |J2||(> 0), Cmaxr —

|J1| + |2
The Haldane model Let b = 2, vi = (1,0)7, vy, = (%,\/Tg)T, v = (1,_\%)T,
vy = (0, \%)T The vectors vy, v, form a basis of R* and (v;)7_, is its dual

basis. The honeycomb lattice is expressed as
{172} X {m1v1 + MoVy | miy, Mo € Z}

In the Haldane model ([13]) not only the nearest-neighbor hopping but also
the next-nearest-neighbor hopping is considered. The honeycomb lattice
linked by these hoppings is pictured in Figure 2. See [21] for experimen-
tal realization of the model.

A version of the Haldane model studied in [17] can be formulated with

E(k) = (E(k)(p,n)1<pm<2;

E(k)(1,1) =m — 2J'(cos((k, v — va)) + cos({k, v1)) + cos((k, va))),
E(k)(1,2) = J(1 + e "®v1) 4 gmillovaly

E(k)(2,1) = J(1 + ettleva) 4 gillevaly

E(k)(2,2) = —m+ 2J"(cos((k, vi — va)) + cos((k, v1)) + cos((k, va))),

10



V2

Vi

Figure 2: The honeycomb lattice linked by the nearest-neighbor hopping (solid
lines) and the next-nearest-neighbor hopping (dashed lines).

where J(€ R\{0}), J'(€ R) is the nearest-neighbor, the next-nearest-neighbor
hopping amplitude respectively and m(€ R) is the on-site energy. It is clear
that all the conditions of £(€in, €mas) except for the spectral properties are
satisfied. Set

gk, k) = ((m— 2J" (cos(ky — ky) 4 cos ki + cos ky))?
+ J2(1 4 cos ky + cosky)? + J3(sinky + sin ky)?)

NI

A direct calculation shows that the eigenvalues of £ (/;:1\71 + 122\72) (12;1, ky €
R) are j:g(kla k?) Let us determine minlﬂ,kgGR g<kl7 k2)7 maXg, koeR g<k17 k?)
exactly. Observe that

g(k’l, kg) = ((m - 2th(k‘1, k)g))z + J2(3 + Qh(k‘l, kﬁg))) s
where h(ky, ko) := cos(k; — ko) + cos ky + cos ke. Moreover,
max_ h(ky, ko) = 3,

N

k1,k2€R
— ik [ —ikso 1
klmk;relR h(ki, ko) = klmkllelR(Re(e (e7"2 4+ 1)) + cos ky)
. 3
— 1 — —ik2 1 l{j = ——.
;If;éﬁ( le™"2 + 1| + cos k) 5

Thus it suffices to find the minimum and the maximum of the function
z e ((m—2J'2)% + J2(3 4 22))2

[—— 3]. We can find them in each of the cases J = 0, J' # 0 and
mJ’ m 2 m 2
24‘{],2 <—— J' # 0 and — 3 < 2 4‘]J,2‘] <3,J #0and 2 4‘]J,2‘] > 3. The
results are organlzed as follows

e 1 J2 < 20 (m — 6.7,
min g(k’l, ky) = /(m — 6J)2 + 9.2, maXRg(k:l, ko) = |m + 3J|.

k?1 ko€cR k1 ,kg S

e If2J(m—6J)< J?< 2J’(m +3.J),

min_g(ky, ko) = \/4J’ (m+3J") — J2,

k1,k2€R 2’J'
Jnax, gk, ko) = max{]m+3J’|,\/m—6J’)2+9J2}.
1,R2

11



o If J2 > 20 (m+ 3J),

min g(k1, ke) = |m + 3.J'], nax g(kl,kg) V(m —6J)2 +9J2.

k1,ko€R

We can deduce from above that ming, y,er g(k1, k2) > 0 for any J € R\{0}
if and only if m + 3J" # 0. Therefore on the assumption that J € R\{0}
and m + 3J" # 0 E € E(emin, €mazr) With epi, = ming, g,er 9(k1, k2), €maz =
maxg, kyer g(k1, k2).

Next let us recall the notion of phase boundary. We define the subsets Q),, Q)_,
QO of R>0 x R by

Q+ = {(5,75) € R>O x R ’ gE(57t70) > 0}7
- ={(8,t) € Roo x R | gp(f,t,0) <0},
QO = {<57t) € R>0 x R | gE(ﬂvtvo) = 0}

It follows that Ry o xR = QUQ_UQo and A(5,t) > 0if and only if (5,t) € Q,. We
call @)y phase boundary. The main theme of this paper is to study the regularity
of Fr on the phase boundary ()y. Because of the periodicity of gg(3,t,0) with
t, Qo is infinite union of copies of one representative curve. This paper’s main
problems can be solved by focusing on the representative curve. The next lemma
is essentially the same as [25, Lemma 1.2] and supports the well-definedness of the
representative curve.

Lemma 1.3. Assume that |U| < 26% Then, there uniquely exists

2 b
B, € <o, tanh ™! (ﬂ)}
Emin 2€min

such that

(B,m,0) <0, VB € Rxy,
gr(B, 2, 0) >0, VB € (0, 5),
9e(Be,2m,0) =0,
ge(B, 2 0) <0, VB € (B, 0),

9gE

where tanh™ : (—=1,1) — R is the inverse function of tanh.

From here we always assume that U € (—%ﬁi", 0) so that the existence of the
critical inverse temperature (. is guaranteed by Lemma 1.3. By the monotone
increasing property of t — gg(8,t,0) in (7, 27) for any § € (0, 8.) there uniquely
exists 7(8) € (m,2m) such that gr(5,7(5),0) = 0. This defines the function 7 :
(0, 5.) = (m,2m). By [25, Lemma 2.2 (i)] 7 € C*((0, 5.)). Remind us that for any
open set O(C R™) C¥(0O) denotes the set of real analytic functions on O. Using
the function 7, we can characterize the phase boundary (), as follows.

(1.12) Qo ={(B8,07(B) +4mm) | B € (0,5.), 6 € {1,—1}, m € Z}
U{(B., 2m + 4mm) | m € Z}.

12



The above characterization was given in [25, (2.3)]. We can see that @)y is a union
of copies of

{(B,7(8) | 6 € (0,6} U{(B, =7(B) +4m) | 5 € (0, 5c)} U {(Be, 2)},

and thus we can consider the above set as the representative curve of the phase
boundary. Moreover,

(1.13)
Qi = {0 | Be(0.8), te @) +amm,—w(8) + dx(m + 1))},

meZ

Q-=] {(BJ) \ B e (0,B.), t € (=7(B) + 4mm,7(3) +47Tm)} L (B.,00) x R

MEZ

This interestingly suggests that in this weak coupling regime the gap equation has
a positive solution only when the temperature is high.

To state the main theorems, we have to make clear our definition of phase
transition. For (p,n) = (+,—) or (—, +) let us set

= (B,t0) € Qp, VB € (Bo — &, o),
Cro = {(ﬁo’m €Qo | FE€Ro0 5t (55 C 0" B € (o fio + o). } |

Here we should recall the fact that for any E € E(€min, €maz)
(1.14) Frlo.ug € C¥(Q+UQ-), Fg e C'(Ry x R),

which was proved in [25, Proposition 2.5 (i)]. For (5o, %) € Rog x R, n € N(=
{17 2,3, })7 (p7 77) S {(+> _)7 (_7 +)} we define the properties (PT)n,(p,n)<607 Z50)7
(PT),,(p.n) as follows.

(PT)n,(p,n) (607 tO)
(Bosto) € Qps

ﬁh/‘nﬁlo 88 B};E (B,t0), ﬁlxﬂ —aa 5}; (B, to) converge to finite values
for any m € {0,1,--- ,n}, and
0" Fg 0"y
li , ,to), Ym € {0,1,--- ,n— 1},
678 OB™ (B:t0) = B\,ﬁ dBm Jpm Pto), ¥m €4 n—1}
O"Fg O"Fg
li l to).
Bl/%lo aﬁn ( )7& 1 aﬁn (/87 0)

(PT)n, oy There exists (5o, to) € Rso x R such that (PT),, (,n) (5o, %) holds.

By analogy with the Ehrenfest classification we state that the system has a phase
transition of order n driven by temperature when (PT), ,,) holds. According to
25, Proposition 2.5 (ii)], (PT)s,4,—y, (PT)2, 4y hold for any emin, €mez € R
satisfying €,,in < €maz, U € (—26%1'", 0) and E € E(emin, €maz)- The question here
is whether (PT),, (,) holds for n > 3, or in other words, a phase transition of order
n(> 3) driven by temperature occurs. The following fact based on (1.8), (1.12),
(1.13) will be useful later.
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Lemma 1.4. Let 5y € (0,5.], n € N, (p,n) € {(+,—),(—,+)}. The following
statements are equivalent to each other.

o There exists to € R such that (PT), . (Bo,to) holds.

e {t e R | (Bo,t) € Qun} # 0 and for any ty € R satisfying (Bo,to) € Qpn
(P (pm)(Bo, to) holds.

° [fﬁo < Bc, (PT>n,(p,n)(5077-<50)) holds. [f 50 = ﬁc, (Pﬂn,(p’n)(60,2ﬂ) holds.

In addition, we need to prepare the concept of stationary point of inflection
(SPI).

Definition 1.5. Let a,b,c € R satisfy a < ¢ < b. Let f € C*((a,)),R).

(1) We call ¢ rising stationary point of inflection of f if there exists ¢ € R such
that

(c—e,c+¢) C(a,b),

df
%(C) =0,
%(x) >0, Vo € (c—eg,c+¢)\{c}.

(2) We call ¢ falling stationary point of inflection of f if there exists e € R.q such
that

(c—¢e,c+¢e) C(a,b),

daf , .
%(0) - 07

%(x) <0, Vz e (c—¢c,c+e)\{c}.

3) We call ¢ stationary point of inflection of f if ¢ is either a rising stationar
y g Yy
point of inflection or a falling stationary point of inflection of f.

We define the properties (SPI)¢(5y), (SPI)e for £ € {r, f}, Bo € Rso as follows.

(SPI),(Bo) Do is a rising stationary point of inflection of 7(-) : (0, 5.) — R.
(SPI);(Bo)  Po is a falling stationary point of inflection of 7(-) : (0, 5.) — R.
(SPI)¢ There exists By € (0, 8.) such that (SPI)¢(5y) holds.

Using these terms, we can state our main theorems. Theorem 1.6 summarizes
the equivalence between existence of a HOPT and existence of a SPI plus the fact
that if a HOPT occurs, it must be of order n € 4N + 2.

Theorem 1.6. Let d,b € N, (‘A’j)?zl be a basis of R, €min, €maz € Rso satisfy

€min S €maz; Ue (_Zi%m’o)’ E € g(eminvemaz); (€7p7 77) € {(ra—h_)? <f7_a+)}
and By € (0, 5.). Then the following statements hold.

(1) (SPD)¢(Bo) holds if and only if there exists n € AN+2 (= {6, 10,14, --- }) such
that (PT)n,(pm (8o, T(Bo)) holds.
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(ii) (SPI)¢ does not hold if and only if (PT)a, ) (5,t) holds for any (B,t) € Q-

(iii) (B,t) € Qpn and (PT)apy)(8,t) does not hold if and only if there ewists
n € 4N+ 2 such that (PT)y (py)(5,t) holds.

In essence Theorem 1.7 gives a necessary and sufficient condition for existence

of a HOPT and a SPI.

Theorem 1.7. Foranyd,b € N, basis (\Afj)?zl of R and €min, €maz € Rso satisfying
Emin < €maz the following statements are equivalent to each other.

(Z) For any UO S (07%)7 (Pﬂ?) < {(+7_>’(_7+)} there exist U € [—U(),O),
E € E(emin, maz), n € AN+ 2 (= {6,10,14, - - - }) such that (PT)y (,n) holds.

(ii) For any Uy € (0,222) & € {r, f} there exist U € [~Uy,0), E € E(emin, €maz)
such that (SPI)¢ holds.

(iii)

Cmin 117 — 12V/2.

emax

Theorem 1.7 is not logically equivalent to the following theorem, which essen-
tially gives necessary and sufficient conditions for the temperature-driven phase
transition to be of 2nd order.

Theorem 1.8. Foranyd,b € N, basis (Vj) L of R and e,nin, €mae € Rsq satisfying
Emin < €maz the following statements are equwalent to each other.

(i) There exists Uy € (0, 222i2) such that for any U € [~Uy,0), E € E(emin, €maz),
(p,m) € {(+, =), (=, +)}, n € N3 (=1{3,4,5,--- }) (PD)n (pn) does not hold.

(ii) There exists Uy € (0, 22} such that for any U € [—~Uy,0), E € E(€min, €maz),
(p,m) € {(+, =), (=)}, (B,1) € Qpy (PD)2p)(B, ) holds.

(iii) There exists Uy € (0, 222) such that for any U € [~Up,0), E € E(emin, €maz),
e {r, f} (SPI)¢ does not hold.

(iv)

Cmin /17 — 12v/2.

emax

Remark 1.9. Theorem 1.7 ensures existence of a HOPT and a SPI under the
condition ee’“—” < V17 —=12v/2. One question is whether the HOPT and the SPI
exist for the same U and E. In view of Theorem 1.6 (i), one can expect that they
do. More precisely the following statement can be deduced from Theorem 1.7 and
Corollary 2.5. Assume that =iz < /17 —12y/2. Then for any Uy € (0, 2min),
& p,m) € {(r,+,-),(f,— )} ‘there exist U € [~Up,0), E € E(Cmin, €maz), 1 €
4N + 2 such that (PT), ) and (SPI)¢ hold.
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Remark 1.10. According to Theorem 1.7, a HOPT driven by temperature exists
in the case £=m < /17 — 121/2. Strictly speaking, we cannot state that a HOPT
exists in the BCS model with imaginary magnetic field unless the derivation of
Fp(B,t) from the many-electron system is justified. In the case fmin < /17 — 12V2
the existence of a HOPT is guaranteed while the derivation of ba E(ﬂ t) is justified
by [25, Theorem 1.3 (ii)]. See Remark 2.13. In the case £ = /17 — 12+/2,

however, we cannot prove existence of a HOPT while justifying the derivation of
FE(BJ). See Remark 2.16.

Remark 1.11. In Remark 1.2 we provided 3 models belonging to £(emin; €maz)
together with the explicit characterization of their €,,;,, €mez. We can apply The-
orem 1.8 to conclude that if £z > /17 — 121/2 and the interaction is sufficiently
small, there is no HOPT in the "BCS model having one of these free Hamiltonians
and the imaginary magnetic field. However, none of the above theorems implies
existence of a HOPT in these models. In fact we do not have a general theory
for existence of a HOPT when we vary €,,in, €mas Or other parameters inside a
specific one-particle Hamiltonian matrix at present. We will consider this problem
by focusing on a couple of simple models belonging to &(emin, €maz) in Section 3.

Nevertheless we prove in Theorem 1.7 that if :Z—az <17 — 12\/5, there exists
E € E(emin, €maz) such that a HOPT occurs with E. In this contradictory situation
one might wonder how such E is characterized in the proof of Theorem 1.7. Here
let us illustrate the corresponding part of the proof of Theorem 1.7. We will prove
earlier in Corollary 2.5 that for (¢, p,n) € {(r,+,—), (f,—, +)} (SPI)¢ holds if and
only if (PT),,(,,, holds for some n € 4N + 2. Therefore if we find U € (—2iz (),
E € &E(emin, €maz) such that a SPI exists, we can use the same pair (U, F) to
prove existence of a HOPT. To prove existence of a SPI, we construct a family
{Es}se01) C E(€mins €maz). Each Eg can be written as E,(k) = ®4(k)I, (k € R?)
with the b x b identity matrix [, and a smooth real-valued function ®,, which is
parameterized by s and takes either e,,;, Or €4, for most of k € R?. Then under
the condition == < /17 — 12v/2 we prove existence of s € (0,1) and U such
that a SPI exists for E, and U, which implies existence of a HOPT as explained
above. Here we emphasize that we essentially use the intermediate value theorem
for a continuous function of s to prove existence of such s € (0,1) and we cannot
determine it explicitly. In fact throughout this paper we are unable to exactly
determine E € E(€min, Emar) for which a HOPT exists. When we prove HOPTs in
a specific model in Section 3, not all the controlling parameters are made explicit.

Remark 1.12. Let us comment on whether we can extend the above results to
gapless free dispersion relations. It is possible to extend the definition of our free
energy density to include gapless dispersion relations. However, as explained in the
beginning of the section, the domain of (/3,t) where we can derive the free energy
density from the many-Fermion system is severely restricted in the gapless case.
Therefore it is difficult to give a coherent sense to our definition of phase transition
as non-analyticity of the free energy density, which might not be the thermody-
namic limit of a quantum many-body system. Putting the issue of derivation aside,
one can analyze the free energy density itself in the whole domain of (3,t). If the
free Hamiltonian is gapless, the phase boundary is very different from that studied
in this paper. In particular the order parameter A(S,t) can be positive for any
t € R in low temperatures. Remind us that A(5,t) = 0 for any ¢t € R in low
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temperatures in the present gapped case. This can be deduced as follows. Let us
consider a gapless one-particle Hamiltonian matrix E satisfying that

For example the dispersion relation (1.11) with u € (—2d,2d) satisfies the above
condition. Then there uniquely exists § € R. such that

anh (£
ge(53,0,0) = _%Jde/p* dk Tr (%) =0,

95(8,0,0) > 0, V8 € (B, ),

A

gE(ﬂaovo) < 07 vﬂ € (Oaﬁ)

Therefore, for any (3,t) € (B, o0) xR gg(5,t,0) > 0, and thus there uniquely exists
A(B,1) € Rog such that gs(8,t, A(8, 1)) = 0. For € (0, 5)

tl}glr gE(ﬁ7 ta 0) = 00,

which ensures that there uniquely exists 7(3) € (0, 27) such that gg(5, 7(5),0) = 0.
We can conclude that the phase boundary exists only in (0, B] x R. The same argu-
ment as in the proof of [25, Proposition 2.5 (iii)] implies that the phase transition
driven by t is of 2nd order. Focusing on the subdomain (0, B] x R, it seems pos-
sible to summarize the equivalence between existence of a HOPT and existence of
a SPI in a way parallel to Theorem 1.6. Therefore it must suffice to find a SPI
of the phase boundary to prove existence of a HOPT driven by 3. However, to
construct a gapless free dispersion relation with which the phase boundary has a
SPI by modifying this paper’s construction is not trivial. We wish to leave the
(non-)existence theory of HOPT in the gapless case as an open problem without
speculating more at this stage.

Concerning the standard dispersion relation (1.11), it is implied by Theorem
1.6 and Proposition 3.5 that if d = 1 and || > 2, there is no HOPT. See [25,
Remark 2.22] for deduction of this statement from Proposition 3.5. One interesting
question is whether the same conclusion holds for any d € N and g € R, which
covers the gapless case (|u| < 2d). The question remains open at present.

Remark 1.13. In the series [23], [24], [25] the interaction is always the reduced
BCS type

U
(1.15) 77 2 Ykttt

x,yel’

with negative U, apart from the insertion of band index. It would be nice if we can
derive the thermodynamic limit of the free energy density and analyze the nature
of phase transition under the influence of imaginary magnetic field for more general
interactions. However, it seems that interactions we can deal with in line with [23],
[24], [25] are limited. Assume that I is spanned by the canonical basis (e;)%_, for
simplicity. We expect that if the interaction is of the form

(1.16) U Z VL (X, ¥) Vi U Uy Pyt

x,yel
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with a function vy, : Z¢ x Z¢ — Rsq satisfying

UL(X7 Y) = UL<X + z,y + Z) = UL(YaX) = UL<X + Lej7Y)7
VX,y,Z € Zd> j € {17 7d}7
(1.17) > fon(x,0) = L7 < e(d) L1

xel

with ¢(d)(€ Rsg) depending only on d, then the same free energy density as that
for (1.15) can be derived in a way parallel to [23], [24], [25]. This is because the

difference between (1.15) and (1.16) is measured by the left-hand side of (1.17) and
is bounded by c(d)L=¢. A concrete example is that

UL<X7y> L +1x7gy in (Z/LZ) dexp< L1+d2|e Tzi—yi) _ 1’)

At present we cannot give an example of interaction for which an essentially dif-
ferent free energy density from that for (1.15) can be derived under the influence
of imaginary magnetic field.

Remark 1.14. In Subsection 1.1 we noted that there is no EPT in the BCS model
with real magnetic field H + 6S, (# € R) when the BCS interaction is weak and
the temperature is high. As the necessary notations are introduced by now, let us
explain more explicitly. Let E € E(emin, €maz). We can reconstruct the framework
[23] to prove the following. There exist ¢(b,d, E) € (0,1] depending only on b, d,
E, n(d) € N depending only on d such that for any 6 € R, § € Ry,

(1.18) Ue [—min{ (b,d, E)(1 + §)"@ 262“"},0)

1
(1.19) lim( BLdlog(Tre (H+65Z)))

L—oo
LeN

=—7 / dk Trlog <2 cosh (%) e PB4 zcosh(ﬂmk))e—wk)) .

Since |U| < 26%1'", the corresponding gap equation

(1.20)
B ! sinh(8+/E(k)? + A?)
7]+ Da /Oo dk T ((Cosh(60/2) = cosh(ﬁ\/E(k)2 AN /EK)? 1 A2>

has no solution. Indeed (L.H.S of (1.20))< |U| + —— <0 for any A € R. This is

the reason why the right-hand side of (1.19) does not contain the gap function A.
We want to have the equality (1.19) for § € (0,3.) where the DQPT takes
place. For this purpose we further assume that

2€mi Cmi
o . —n(d) mn mn
Ue [ min {c(b, d, E)2 — tanh ( 5 )} ,0) .

It follows from Lemma 1.3 that . < 1. For any § € (0,5, U satisfies (1.18),
and thus (1.19) holds. Since the right-hand side of (1.19) is analytic with (3, 6)
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in (0,5.) x R, there is no EPT driven by (3,0) in (0, 3.) x R. Though we cannot
derive the zero-temperature limit of the free energy density within our framework,
at least we can formally extract some hint of existence of critical magnetic fields
at zero temperature. Observe that

ma (R.H.S of (1.19)) = —Dd/ dk Tr (max{%, |E(k)|}) + Dd/ dk Tr E(k),
—00 Iz, I

which is not analytic with 6 in R and singular points exist in [—2¢e,,42, —2€min| U
[2€min, 26maz). For example if

Emin 0
E(k) B ( 0 €maz )

with any €,,in, €maz € Rsg satisyfing €, < €mae, d € N and basis (Vj)§-l:1 of RY,

0
(R.H.S of (1.19)) = — max {gi,@mm} — max {%,emaz} + €min + Cmaz-

lim
B—00
Therefore 6 = +2¢,,;,, 26,4 are critical points at zero temperature. However,
our DQPTs occur at positive temperatures whether the quench from H to H 4 6S,

(0 € R\{0}) crosses these critical points or not.

2 Proof of the main results

In this section we will prove Theorem 1.6, Theorem 1.7 and Theorem 1.8. The
proof of Theorem 1.6 will be completed in Subsection 2.1. We decompose Theo-
rem 1.7, Theorem 1.8 into several claims. We will prove the claims step by step.
Combination of them will complete the proof of Theorem 1.7, Theorem 1.8 in the
end of this section.

2.1 HOPT and SPI

Here we prove Theorem 1.6, the equivalence between the claim (i) and the claim
(ii) of Theorem 1.7 and the equivalence between the claim (i), the claim (ii) and

the claim (iii) of Theorem 1.8. To this end, we define the functions Fg, gg :
Rog X R x (—€2,  00) = R for E € E(emin, €maz) bY

~ z Dd
Fp(z,t,2) = — — —/
U] T Jr
sinh(z+/E(k)? + 2)

- -2 r

95(w,4,2) =~y + Da /F;o et ((cos(t/Q) + cosh(z/E(k)? + 2))/E(k)? + z) |
Observe that
(2.1)

t
dk Trlog (cos (5) + cosh(zy/ E(k)? + z)) ,

*
oo

Fi(B,t) = Fr(B,t, A(B, 1)?) — % / dk Trlog(2e=7709), (8,1) € Rog x R,
'y

(2.2)
ge(x,t,z) = gp(x,t, 22),
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(2.3)

OF 1.

aZE(:v t,z) = —§gE(x,t, ),
(2.4)

09k

r,t,2) <0, V(r,t,2) € Ryg x R X 2 0).
(77) ( ) > ( Cmin>

0z
The inequality (2.4) is based on the fact that

sinh x
2.5 »— "R — R
(2.5) v (e + cosha)z ~~ °
is strictly monotone decreasing for any ¢ € [—1,1]. The equality (2.1) suggests
that we can study the regularity of the function Fg by analyzing Fr(8,t, A(5,1)?)
instead. It follows from (1.14), (2.1) that

(2.6)
(B,t) — ﬁE(ﬁ, t, A($3,t)?) is real analytic in Q. U Q_ and C'-class in Ry x R.

We can see from this fact and the inequality (2.4) that the statement of the next
lemma makes sense.

Lemma 2.1. For any n € Nso (= {2,3,4,---}) and (B,t) € Q4 the following
equality holds.

(2.7)
9N Fop.t, A1)
86 E ) Uy )
G”F
o (B L A1)
n—2 1 ~ n—1—j~
Z( ) (aﬂ(x7tuz)8—_1€E(I‘7t7z>)
HL(g t,A(B = Oz Ox Ozxn—1=J ep,
2=A(B,t)2
99k (0
+ Z Losnlptnsn-1Bon <(E<x’t’ Z)) ’(&caazb(x’t’ ?) a,bENU{0}
p,NEN> 1<a+b<n—1
0°g. g
: axf(‘rat?'z) aan(xat72> -
2=A(B,t)2

Here P,, is a polynomial with real coefficient for any p,n € N> satisfying p <1,
p+n<n—1. ForCop €C (a,b e NU{0}, 1<a+b<n-1)

(Cap) apervgoy = (Co1,Co2,++ ,Con-1,C10,C11, - ,Cin2, -, Crn10)-

1<a+b<n-—1

Proof. Take any (53,t) € Q. By (2.3)

S Fe(0,88,0%) = S (6.0, A5, 0%) - A0S (3. 078(5,1, A1)
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Here we remark that by the implicit function theorem for real analytic functions
(see e.g. [26]) A € C¥(QLUQ_). By (2.2) g(B,t, A(B,t)*) = 0. Thus,

0 ~ 8FE

Moreover, by (2.3)

S (B L AB 1)),

(2.8) <3)2ﬁE(ﬁ,t,A(5,t)2)

op
a%EE 04 82FE

82 FE

OEe 51, A8,87) — A5, 1022 <@>@ﬂ@tMﬁw>

ap
We can derive from (2.2), (2.4) that

0A . GE(31 AR
a5\ = 30 54 ABL )

By substituting (2.9) into (2.8) we obtain that

(2.9) A(B,1)

2
8)2~ a2FE (335 <5tA(6a )))
55 ) Fr(B.LARB 7Y = ——= (8,4, A(B,1)°) +
(35 2%2 (8,1, A(B,1)?)
which is (2.7) for n = 2.

Let us assume that (2.7) holds for some n € Ns,. By differentiating both sides
with 8 and using (2.3), (2.9) we have that

9

(2.10)
) n+l )

mﬂF %e (8,1, A(B, 1)) FZ (8,1, A(5,1)?)
- n+1 (5 t A(ﬁ t) )+ 28915(6 ¢ A(B t) )

n—2 a 8”’1]
g ) (st gaena)|

=0 2=A(B1)2

0z z=0,
2=A(B,t)2

n—2 i . ~

o\’ (09r o g
. (% (8:v( b2 G @’t’z)) ]
=0 z=p,
5 2=A(B,1)2

BB, A(8,1)?)

% (8,1, A(B,1)2)
) 1 20N [(09s oGy
il _ —_ t t
0 ﬁ%@i%ho(&J (Frweagemenn) )|



0 %E(xt2) 0
+ Z Lo<nlptn<n-—1 (% - maz>

pnEN>1 0z

a,g,E -1 aa—&-b’é’E
' (PM ((E(%t’Z)) ’ (833“(%5 (z,,2) a,bENU{0}

1<a+b<n-—1
0°qg g
’ gE(xata z)ﬂ(m,t,z)>

oxP ox"

For any smooth function f(z)
n—2 df dnil*jf n—1n-1 1 f dn,kf
(2.11) Z <dx) (da: <x)dx”—1 —J ) - ZZ ( : ) dz* 2ok ) dzn—k (z),

(2.12) i(dx) (jj;( );l;l_j{ ) ;(dl«) (df )Z;njf(az)).

J=0

3 M

By using (2.11), (2.12) for f(z) = gr(x,t, z) we can see that the 1st, 2nd, 3rd term
of the right side of (2.10) can be organized into the 1st, 2nd term of the right side
of (2.7) for n + 1 and the 4th, 5th, 6th term of (2.10) can be summarized into the
last term of the right side of (2.7) for n + 1. Thus, (2.7) holds for n + 1. The
induction with n concludes the proof. O]

To understand the following lemmas, let us recall that 7 € C*“((0, 3.)), which
is claimed in [25, Lemma 2.2 (i)].

Lemma 2.2. (3)

Jdg. dg. d
T (5:7(8),0) = =5E(6,7(8),0)35(8), V5 € (0.
(it) Assume that By € (0,5.), n € Nso and
Zﬁm(ﬁo) 0, Vme {1,2,--- ,n—1}.
Then
8ng

(50, (B()),O) :0 Vme {0,1, ,n—l},

7 5 (B, 7(60).0) = ~ 2 (B, (), 0) 1 ()

oz

agr
Proof. (i): The claim follows from the equality

(213> gE(ﬁ,T<6);O) = 07 Vﬁ € (0750)
(ii): We can derive from (2.13) that

o dr, 9\
t,0 =0, Vie NU{0 0, 5e).
(5 + F@5) st t0) =0 MIeNUL) Ae0.4)
t=r(8)
The result follows from this equality and the assumption. O
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Lemma 2.3. Assume that By(€ (0, 5.)) is a SPI of (). Then there exist n € 2N+1
(={3,5,7,---}) and € € Rxq such that (By — €, o +¢€) C (0,05,) and

;lﬁm(ﬁo) 0, Vm e {1,2,--- ;n— 1},
dTL
) £ 0.
08) 0. V8 € (B0 — .o + Nk
Moreover,
(2'14) aaxm (607 (50)70) =0, Vm € {071"" 7n_1}7
(9”gE

(8o, 7(Bo), 0) # 0.

Proof. The claims on 7(+) are general properties of a real analytic function having a
SPI. However, we provide the proof for clarity. By the assumption and the definition
of SPI there exists € € R such that (8y — ¢, 5o +¢) C (0, 5.), g—g(ﬁg) =0 and

(2.15)

;l;(ﬁ) > O VB c (BO — & 50 +€)\{ﬂo} or ﬁ

Since 7 € C¥((0,f,.)), there exist & € (0,¢],
Vm € {1727 7n_1}7 %(50) #Oand

( ) <0, VB e (Bo—c¢,bo+e)\{bo}.

3212(/30) = Oa

“Xm ,dﬁm(ﬁo)(ﬁ Bo)™ 1, VB € (B — &', o + ).

We can deduce from the property (2.15) and the above expansion that n must
be odd. At this point the claims on 7(-) have been proved. The claims on
ge follow from the above properties of 7(:) and Lemma 2.2 (ii) plus the fact

%e (B, 7(fy),0) > 0 based on 7(fy) € (,2n). 0
We can prove Theorem 1.6 by applying Lemma 2.1 and Lemma 2.3.

Proof of Theorem 1.6. (i): Assume that (SPI)¢(5;) holds. We can see from (1.13)
and the general behavior of 7(-) proved in [25, Lemma 2.2] that (8o, 7(80)) € Qpn-
By Lemma 2.3 there exists ng € 2N + 1 such that (2.14) holds for n = ny. We
remark that

0 O'F
216) () Fuls.t. 0000 = TE@0, W80 € QL 1€ N}

Bearing (2.11) in mind, we observe that for any n € {2,3,---,2ng — 1} each of the
2nd, 3rd terms of the right-hand side of (2.7) contains a;?f (B,t, A(B,t)?) for some

m e {1,2,--- ,ng—1}. For n = 2ng the 2nd term contains (%22 (5,1, A(S,1)?))?

oz™0

and each of the 3rd terms contains 8 gE (B,t, A(B,1)?) for some m € {1,2,--- ,ng—
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1}. This observation and the properties (2.4), (2.14), (2.16) imply that for any
neq{2,3,--,2ny—1}

i (55 ) el (5. A, 7))
(8.7(80)) €Q1

8Z}wmwmAwmmmﬁ

= lim
B—Bo
(B,7(Bp))EQ 1

8”FE

= O (/60a (
lim (aﬁ) Fe(,m(0), A, 7(60) ),
(8,7(Bp))€Q—
i () P60, 56,5
(8,7(80))EQ 4
> ( ) e 2
02"0F J=no\ ng—1 9" gk )
= ———(Bo, 7($0), 0) + 2% (5o, (o), 0) (6x”0 (B0, 7(50). 0)
_PF,
< 5 (B0, 7(50). 0)
o 2no~
— tm (55) Fela. (). AR
(B,7(B0))EQ—

Combined with (2.1), the above argument concludes that (PT)an,. (o) (B0, 7(5o))
holds.

Assume that (SPI)¢(fy) does not hold and (5o, 7(5)) € @, It follows from
(1.12), (1.13) that dT(ﬁo) >0if & =, g—g(ﬂo) < 0if & = f. Consider the case
that £ = r and 2 (ﬁo) = 0. Since 7(-) is real analytic and not constant, there
exists ¢ € Ry such that d—T(ﬁ) # 0, V8 € (Bo — e, 60 +e)\{bBo}. If j—g(ﬁ) < 0,
VB € (Bo — ¢, Bo) or —T(B) <0, VB € (Bo, Bo + €), it contradicts that (8y, 7(5o)) €
Q4+ —. Thus dT(ﬁ) >0,V0 € (Bo—¢e,Po+¢)\{Po}, which means that fy is a rising
SPI, a contradiction. Therefore fl—g(ﬁo) > 0 if & = r. Similarly we can prove that
5(Bo) <0if = f.

We can derive from this, (2.7) for n = 2, Lemma 2.2 (i) and (2.16) that

2
i (55 ) Felsr(0, A8, 7))
(8:7(Bp))€Q

(‘92FE (%22 (Bo, T(B0), 0) %% (50))?
5 (B0, 7(Bo), 0) + 28%(50, (%).0)

g
o FQE (B0, 7(5o), 0)

2
= tm (55) Bl (G AG (),
(B,7(Bp))eQ—
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Here we also used (2.4) and that 89E E(Bo,7(80),0) > 0. This together with (2.1),
(2.6) imply that (PT)a, () (Bo, T (ﬁo)) holds, and thus (PT),, (,.) (80, 7(8o)) does not
hold for any n € 4N+ 2. If (5o, 7(50)) & Qpr» (PT)n (o) (Bo, 7(Bo)) does not hold
for any n € 4N + 2 by definition. The claim (i) is proved.

(ii): Assume that (SPI)¢ does not hold. Take any (51,t1) € Q,,. First let us
assume that 8, € (0, 5.). It follows from (1.12), (1.13) that (81, 7(61)) € Qpy. The
same argument as in the 2nd half of the proof of (i) leads to that

B—B1

) 0\? ~ 2
lim (%) Fu(B,7(8), AB,7(51))?)

(B,7(B1))EQ+
i O\ ~ 2
< ,Bhlgl 8_ FE(ﬁaT<ﬁ1)aA(ﬁaT(ﬁl)) )
S8y I}
(B,7(B1))€EQ -

This property, (2.1) and (2.6) ensure that (PT)s,.) (81, 7(61)) holds. Then by
Lemma 1.4 (PT) (5 (f1,t1) holds.
Next let us assume that 5, = S.. In this case

2 1
q t.0)=——+D dk T \v/ R
9e(:11,0) = 17 + /w r(tanh(%!E(k)ME(k)\)’ vER

and thus ﬁ(w t1,0) < 0, Yz € Rsy. Using this inequality, (2.4), (2.7) for n = 2
and (2.16), we deduce that

. 0\ ~ 32FE (%2 (B, 1,,0))>?
] — ) F A = O
- (%) (0,0 A0 = G (Bt 0) 4 2
2
aFE(ﬁlatb )
= 1 9 2? B.t1, A(B,1)?
= BLIEI 86 E( 5 U1, ( ) 1) )7
(B,t1)€EQ _

which together with (2.1), (2.6) imply that (PT)q ) (51,%1) holds. Thus we have
proved that if (SPI)¢ does not hold, (PT)q (,,)(3,t) holds for any (3,t) € Q-
If (SPI)¢ holds, by the claim (i) there exist 85 € (0,5.), n € 4N + 2 such that

(PT)n,(pm) (B2, 7(B2)) holds. This means that (3, 7(52)) € Qpn and (PT)s () (B2, 7(52))
does not hold. We have proved the claim (ii).

(iii): Assume that (8s,t3) € Q,5 and (PT)a, () (83, t3) does not hold. If 33 = f.,
by the 2nd half of the proof of (ii) (PT)a,(p) (B3, t3) holds, which is a contradiction.
Thus f3 € (0,5.). If (SPI)¢(B3) does not hold, by the 1st half of the proof of
(ii) (PT)2,(pm) (B3, t3) holds, contradicting the assumption. Thus (SPI)¢(f3) must
hold. Then by the 1st half of the proof of (i) there exists n € 4N + 2 such that

(PT)s, o) (B3, 7(B3)) holds. Moreover, by Lemma 1.4 (PT),, (, (83, t3) holds. The
converse is obvious from the definition. O]

As a corollary of Theorem 1.6, we can prove the following.

Corollary 2.4. (1) The statements (i), (ii) of Theorem 1.7 are equivalent to each
other.

(2) The statements (i), (ii), (iii) of Theorem 1.8 are equivalent to each other.
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Proof. (1): If (PT), ) holds with n € 4N + 2, by Lemma 1.4 there exists
Bo € (0,8.] such that (PT), (8o, 7(5o)) holds if By < B, (PT)n, (o) (Bo, 27)
holds if By = B.. If By = B, it follows from the proof of Theorem 1.6 (ii)
above that (PT)s (,n) (B0, 27) holds, which is a contradiction. Thus 8, < 3. and
(PT) (o) (Bo, 7(Bo)) holds. We can deduce the equivalence between (i) and (ii) of
Theorem 1.7 from the above argument and Theorem 1.6 (i).

(2): Theorem 1.6 (ii) implies the equivalence between the statements (ii), (iii).
We can deduce from the definition of (PT),, ,, that the statement (ii) implies the
statement (i). It suffices to show that the statement (i) implies the statement (iii).
Suppose that for any Uy € (0, 26%) there exist U € [-Uy,0), E € E(€min, €maz),
¢ € {r, f} such that (SPI)¢ holds. By definition there exists 8y € (0, 5.) such that
(SPD)¢(Bo) holds. Set (p,n) = (+,—) if & =1, (—,+) if ¢ = f. By Theorem 1.6 (i)
there exists n € N>3 such that (PT),, (,, holds. This means that (i) implies (iii).
Thus the claim holds true. ]

The following corollary will be used in Subsection 2.4 and Subsection 2.5 to
prove key propositions on which Theorem 1.7, Theorem 1.8 are based.

Corollary 2.5. Under the same assumption of Theorem 1.6 the following statement
holds. (SPI)¢ holds if and only if there exists n € 4AN+2 such that (PT), () holds.

Proof. By Theorem 1.6 (i), if (SPI)¢ holds, there exists n € 4N + 2 such that
(PT),,,(p,n holds. It follows from the 2nd half of the proof of Theorem 1.6 (ii) and
(1.12), (1.13) that (PT)s 4 —y(B, t1) holds for any t; € R satisfying (8.,t1) € Q4 -
and (f.,t) ¢ Q_ 4 for any ¢ € R. This ensures that if (PT), () (5,t) holds for
some (5,t) € Ryg x R, n € 4N + 2, then 8 € (0,5.). We can deduce from this
property, Lemma 1.4, Theorem 1.6 (i) that if there exists n € 4N + 2 such that
(PT)p .y holds, (SPI) holds. O

2.2 General lemmas

Here we prepare several lemmas in order to prove Theorem 1.7, Theorem 1.8 in
the following subsections. For E € E(emin, €maz) We define the function F, :
R x (=1,0) = R by

Foo(z,y) = Dd/

T

sinh(zF(k))
i (<y T cosh(xE<k>>>E<k>> |

In fact this function was defined in [25, (2.38)]. We keep using the same notation
for consistency with the previous paper. First of all let us state a basic lemma
which follows from Lemma 1.3 and is the same as [25, Lemma 2.1]. Presenting the
whole statement here must be convenient for the readers to apply in the subsequent
construction.

Lemma 2.6. Assume that |U| < 26%“1, y € (—1,0

)
and 2 = Foo(B.y). Then f € (0, 8.) and y = cos("2

6 € IR>O; E € g(emin76max)
ol — 2 )-

The next lemma gives a sufficient condition in terms of F, for 7(-) not to have
any SPI.

26



Lemma 2.7. Let S C E(emin, €maz), S # 0. Assume that there exists yo € (—1,0)
such that for any y € (—1,yo] and E € S there uniquely exists xo € Rsq such that
s (19,y) = 0. Then there exists Uy € (0, 2min) such that for any U € [—Uj,0)

Ox
and E € S 7(-) has no SPI in (0, 3.).

Proof. The first half of the proof is close to the initial part of the proof of [25,
Proposition 2.8]. Take any E € E(emin, €maz)- It follows from Lemma 1.3 that for
U € (—32min ()

-1
8, < F— ( b|U | ) < 2 tanh (1)

Emin Emin Emin

By the monotone decreasing property of the function (2.5) and the above inequality

bsinh(5e ) bsinh(2tanh (1))
Emin(cos(T(8)/2) 4 cosh(Bemin)) ~ emin(cos(7(8)/2) + 1)’

<

(I

and thus

2 min

cos (22 1 < I Wy e (0,5,

This implies that there exists Uy € (0, 26%) such that for any U € [-U,,0),
E S 5(emin7 ema:v)

(2.17) cos (@) € (=1, VB € (0,5,).

Let us fix U € [-Up,0) and E € S. Suppose that 5y (€ (0,5.)) is a SPI of 7(-).
Let 81 € (0, 3.) be a global minimum point of 7(-). Remark that by the behavior
of 7(-) summarized in [25, Lemma 2.2] a global minimum point exists. By the
definition of SPI 3; # [y. Let us assume that 51 < fy. We can deduce from [25,
Lemma 2.2] that there exists 82 € (0, 1] such that 7(82) = 7(5o). It follows that

== (en (197)) = (en (797) ) = = (s (757

By the mean value theorem there exists 3 € (2, f) such that

s P (s (709)) o

On the other hand, since (3, is a SPI,

(2.19)

-5 o (40 - (4) B (e (52)
(s ()
By (2.17) cos("2) € (1,5, which together with (2.18), (2.19) contradict the

assumption. Similarly we can derive a contradiction by assuming that g; > fy.
Therefore 7(-) cannot have any SPI in (0, 3.). O
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The next lemma gives sufficient conditions in terms of F, for 7(-) to have a
SPI.

Lemma 2.8. Let Uy € (0, 2emin) yy € (—1,0).

(i) Assume that xq is a rising SPI of the function x — F(z,y0) : Rsg = R and
Foo(xo,y0) > U% Then there exists U € [—Uy,0) such that 7(-) has a falling
SPI in (0, 5.).

(ii) Assume that xq is a falling SPI of the function x — Fy(x,yo) : Ruog — R and
Foo(z0,90) > Ulo Then there exists U € [—Uy,0) such that 7(-) has a rising
SPI in (0, 5.).

Proof. We only give a proof to the claim (i). The claim (ii) can be proved similarly.
By the assumption there exist ¢ € Ry, U € [—Uy, 0) such that

(220) (IO —&,Zo + 5) C R>0,

0F
W(‘r(b ?/0) = 07

OF
Ee —(x,90) >0, Vo € (19 — &, 70 + )\ {20},

2
— 757 + Foo(@o, 90) = 0.
19
Here we use Lemma 2.6 to ensure that zy € (0,/.) and yo = cos(= ;30)). We can
derive from the equality F,.(x,cos(~ (x))) =2 (z €(0,8.)) that

0]
0= 20w - goin (T5) a2

Oz 2
It follows from 282 (z4,y5) = 0, sm(T(mO)) > 0 and 2= 2 (9, yo) < 0 that

0F

(370; Yo).

dr
T (20) = 0.
3 (o)
By the analytic implicit function theorem (see e.g. [26]) there exist &1 € (0,¢]
and a real analytic function Y : (zg — €1, 29 + £1) — (—1,0) such that

(2.21)

2
— 17+ Pl Y (@) = 0, v € (w0 — 21,30 + 1)
Y (20) = Yo.

Let us show that there exists 5 € (0,¢;] such that

(2.22) Y(z) < yo, Vx € (z9 — €2, 20),
Y(:L‘) > 1y, VX € (ZL‘Q,$0 + 52).

Suppose that for any e5 € (0, 1] there exists 1 € (xg—es3, o) such that Y (x1) > yp.
By (2.20) and the fact y — Fo(x1,y) : (—1,0) — R is strictly monotone decreasing

2 2
— = Fo(21,Y (1)) < Foo(21,90) < Foo(0,90) = —,
U] U]
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which is a contradiction. Thus there exists e3 € (0, 1] such that
Y(z) < yo, Vx € (z9 — €3, 20).

Similarly, suppose that for any 4 € (0,e1] there exists x3 € (g, 2o + €4) such
that Y (z2) < yo. By (2.20) and the monotone decreasing property of the function
Y= Foo(any) : (_170) —-R

= Pl Y(22) 2 Pz, ) > Frolo,0) = -

7 = Foo\l2, T (X2)) = L'oo\T2; Yo 0o\ L0, Y0) = 17775

Ul 19

which is again a contradiction. Therefore there exists g4 € (0, 1] such that
Y(x) > Yo, Vx € (330,.’13'0 + 84).
The above arguments conclude that the claim (2.22) holds true.
The property (2.22) implies that there exists e5 € (0, €3] such that

(2.23) z—};(x) >0, Vo € (xg — &5, 20 + &5)\{Zo}-

This can be confirmed by expanding the real analytic function Y'(-) into the Taylor
series around = = xy. By applying Lemma 2.6 again we observe that (xg — 5, xo +
55) - (0760) and

Y (z) = cos (@) . Va € (2o — &5, 70 + £5).

We can deduce from the above equality, (2.23) and the fact 7(x) € (7, 27), Vo €
(f[)() — E&5,%0 + 55) that

dr
%(6) < 0, Vﬁ S (l’o — &5,%0 + 65)\{930}.
This combined with (2.21) concludes that z; is a falling SPI of 7(-). O

Let us prepare a key lemma to prove existence of a SPI of 7(-) in Subsection
2.4, Subsection 2.5 under the assumption :::—;’; < /17 —12/2. Let us recall the

definition of the functions W : Ry x (—1,0) X Ryg x Ryg — R, W Ryg X Ryg X
R-o — R given in [25, (2.62), Proof of Proposition 2.16].

sinh(z) sinh(zx)
W =
(‘Ta Y 2, S) Y+ COSh(x) 5 (y + COSh(ZZU))Z’
(2.24) W(z,2,5) = — :

+ s .
1+2 1+ 222
Lemma 2.9. For any d,b € N, basis (ffj)?zl of R, €rmazs €min € Rug satisfying
0 < €min < €maz, So € (0,1) there exists
E, 1
{ ’6}56(0,50),56(0,1—5(%)
such that if we define Fys: R-q x (—1,0) x (0,s0) = R by

sinh(zFE; 5(k)) )
(y + cosh(zE, 5(k))) Es 5(k)

C g(emi'm emax)

(2.25) Fs(z,y,s) == Dd/

I'%

dk Tr (

1
for § € (0,1 —s§), the following statements hold true.
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1
(i) Foranyé € (0,1 —s§)

d

ami
s T2 000 1
keRd m;ENU{0} ||=" T 8/€j J=17=
(G=1,--,a) W= bxb

is constant with s € (0, sg).
(i)
Fy € C®(Rag % (—1,0) x (0, 50)), V8 € (0,1 — 7).

F&('vyas) S CW<R>0)7 V(y,S) S (_17()) X (07SO>7 J € <07 1- Sg)

(iii)

N0 oz
se(0,1-s¢)

locally uniformly with (x,y,s) in Rsg x (=1,0) x (0, s0) for j € {0,1,2}.
(iv)

. 1, OIF
lim (y + 1202y 1, y, 5)

(4,6)—(~1,0) oxi

(y,6)€(—1,0)x(0,1—5F)

- :L'] maxr Y

max S

=

locally uniformly with (x,s) in Rsg x (0, s0) for j € {0, 1}.

Remark 2.10. We will use the property (i) only to discuss the derivation of the
free energy density from the many-electron system in Remark 2.13. The property
(i) is not necessary to prove Theorem 1.7 and Theorem 1.8.

Proof of Lemma 2.9. We can construct Es s € E(emin, €mar) I @ way similar to the
construction of “E£” in [25, Lemma A.1]. Here let us describe the initial part of the
construction in detail as it was skipped in the proof of [25, Lemma A.1]. Take any
0 € Rog. Define the function ¢; 5 : R = R by

_ CTFE g e (—m4,0),
(bl,&(x) . { O’ T E (—OO7 —'/T(S] U [07 OO)

Observe that ¢1 5 € C*°(R). Define the function ¢o5: R — R by

I dtds(t)
Paslw) = [ dtdrs(t)

It follows that ¢o5 € C*°(R). Then let us define the function ¢35 : R x Ryg — R
by

G3,5(7,8) = pa5(x + 78%).

30



Observe that ¢35 € C°(R x R-) and for any s € R

=

¢35(,8) =0, Vo € (—o00, —m(d + 5
¢3s(r,5) =1, Vo € [—ﬂsé,oo),

(.%%,5(33,8) >0, Vo e (—n(d + 35) —ﬂsé)

)l

Moreover, define the function ¢45 : R x Ryg — R by

| ¢ss(z,s), x€(—00,0),

Observe that ¢4 5 € C°(R x R5) and for any s € R

Gas(z,s) =11if |z| < TS,

Gas(z,s) =0if |z| > 7r(6 + si),

bas(r,s) € (0,1) if nsi < 2| < 7T(5+s§)
Gas(x,s) = pus(—x,s), Ve € R

Furthermore we define the function ¢s5 : R x R.y — R by

¢5({lf, S) = (emax - emin)%¢4,§(l’ -, 5)7 V(]J, S) € R x R>0-
It follows that ¢5 € C*°(R x R.g) and for any s € R.g
o5(z,8) = (Emaz — emm)% if |x —7| < 7TSé,
(x,s) =0if |x — 7| > 7r(5+sd)
os(x,8) € (0, (emaz — emm)ﬁ) if Tsd < |lr — 7| < 7T(5+S%)
(

s(m+x,8) = ¢ps(m —x,5), Vo € R.
Moreover, for any n € NU {0}, ¢,co,¢1,+ -+ ,cn € R
(2.26) sup [c + Z %5 d) is constant with s € Ry.
zeR

Then by using ¢ in place of “¢” we can construct Fj; in the same way as the
construction of “E” in the proof of [25, Lemma A.1]. Let us sketch the construction

1
for completeness. Let so € (0,1), 6 € (0,1 — s§). Define the function ®; : R? x
(0,50) — R by

q)5(x17 e 7xd7 8) = H¢5<xj7s> + €min -

Observe that &5 € C*°(R? x (0, s9)),

Qs(z1, T, 8) = €mag if |2 — 7| < 71-557 vje{l,---,d},
(I)(;(le,w' 7xd75) = €min if El] € {1,“' ,d} S.t. ’J:J —7T| > 71'((54—5%)
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Os(x1,- -+ , x4, S) € (Eminy Emaz) Otherwise.
Then we define the matrix-valued function EA575 : I, — Mat(b, C) by
By s(k) = 05((¥1, -+, Va) "'k, 8)I,, k € T,
Let E,s5: R? — Mat(b, C) be the periodic extension of E 5 so that
d
E,s (k +) 27rmj<zj> = E,5(k), Vk € %, (my)l, € Z°
j=1

One can check that E,5 € E(emin, €mas)- In particular the property (1.6) can be
confirmed in the same way as in the proof of [25, Lemma A.1].

Take any m; € NU{0} (j = 1,---,d) with Z;l:lmj < d+2 SetV :=
(Vy,-++,Vq) € Mat(d,R). By (2.26) for any s € (0, so)

@mj d am]‘
sup i Es.5 (k) = sup e —FE,5(VK)
keR? |54 8kj - ke[0,27]d 8k bh
d d mj

_ -1 9 7
- ASU.p H (Z(V )Zj_A) (H ¢5(k], + emzn)

keR? |j=1 \i=1 Ok; j=1

d d m;
= sup sup H Z(V’l)- 9 b5 <k ) bs(kj, 8) + €mi
J = 1 2 min
(k kd)GRd 1k eR j=1 i=1 akl j=2

= sup sup
(.1231,/;‘3,- k q)ERI— 1k2€R

keRd | =1

d d mj d
= sup H (;(Vl)m’ az; ) (H o5 (l%j, %) + emm> ‘

= sup
kcR4

which implies the claim (i).
We can deduce the property (ii) from the equality

Fy(z.y. s) = b(2m) / i sinh(az(I)(;A(lA{,s)) -
s p2r1  (y + cosh(z®s(k, 5)))@s(k, s)
Let us define the function ® : R? x (0, sy) — R by

(b(x cee S) o €maz if |xj _7T| S 7TS$, VJ € {]_7 .. 7d}7
15 y Ldsy . Cmin if 3] € {17... ’d} S.t. |$j o 7T| > 7TS$.

Observe that

. o [ g sinb(r(k.)
W Foloy,s) =b@m) /[O,Qﬂddk(yjtcosh(mfb(f{ )0k, 5)

1
5€(0,1-s&)
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€min 1 — S
-1 min
= bse, .. W (emwx, Y, —, )

max S

locally uniformly with (z,y,s) in Rug x (—1,0) x (0, s9). One can derive an upper
bound on the right-hand side of the following equality to verify the claimed locally
uniform convergence.

€min 1-s
Fg(ﬂf, Y, 3) - bS@;ng <€maxx7 Y, —, )

max S

~

= b(2m) ¢ dk
1 1
Qr(3+54)\Q(rs 1)

( sinh(xq)(i(l;,s)) L sinh(ac(I)A(l;,s)) i )
(y + cosh(z®s(k, 5)))Ps(k,s)  (y+ cosh(zP(k,s)))d(k,s) )’

where Q(t) := [r — t, 7 + t]¢ for t € (0, 7). Moreover,

x
1+ Zd(k, s)?

11mn
(y,6)—(—1,0)

VY + 1Fs(/y+ 1z,y,s) = b(27r)d/ dk
1 [0,27]@

(4:8)€(~1,0)x (0,1—s&)

= €min 1 —8
o 1 min
= bse,, ., W (emmx, —, )

max S

locally uniformly with (x,s) in Ryg x (0,80). The convergent properties of the
derivatives of Fs can be confirmed similarly. [

2.3 Non-existence of SPI

Here we prove a proposition which ensures that the claim (iv) of Theorem 1.8
implies the claim (iii) of Theorem 1.8. In the proof we will use the function w :

sinh(zz)
y + cosh(zz))z

u(z,y,z) == (

We essentially rely on [25, Lemma 2.12] to prove the next proposition.

Proposition 2.11. Assume that ::—a’; > /17— 12v/2. Then there exists U, €
(0, 2emin) such that for any U € [~Uy,0), E € E(€min: €maz) T(-) has no SPI in
(07 ﬁc)'

Proof. Let us prove the following statement.

(2.27)
There exists yo € (—1,0) such that for any y € (—1,v], F € E(€min, €maz)

o0

0
there uniquely exists xg € Ry such that 5 (x0,y) = 0.
x

If (2.27) holds, then we can apply Lemma 2.7 with S = £(emin, €maz) to conclude
the proof.
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If emin = €maz, Fool,y) = bu(z, vy, emaz) For any y € (—1,0), aF"O (xo,y) =0
if and only if xo = M
of cosh [g,,. Thus (2. 27) holds

Assume that €, < €maz. Let us fix F € E(emin, €maz)- By applying Rouché’s
theorem one can prove that there are continuous functions e; : I}, — R (j =
1,2,---,b) such that e;(k) < eg(k) < -+ < e(k), {eigenvalues of E(k)} =
{e;(k)}o_, for any k € T'%. It follows that

, where cosh™ : [1,00) — R is the inverse function

Emin = Min min \ej(k)|, €maz = NAX INax le; (k)

kel's, je{1,- kel'}, je{1, b}
(2.28) ZDd/ dku(z,y, lej(k)|), V(z,y) € Ry x (—1,0),
OF h= |y
(229) W(,T,y) >0, Vo € (O, Cose—(’y|):| ,
0F cosh ™ (Jy|~1)
Too Lo ) ~1,0).
Ee (x,y) <0, ‘v’xe{ — ,oo),ye( ,0)

The inequalities (2.29) imply that for any y € (—1, —%] there exists zo(y) €
(COShfl“y'fl), COShilqy'fl)) such that 22 (z4(y),y) = 0. Observe that

€max €min

€0 €mazx
2.30 X < Cmaz—— Ve € |emins Emaz
(2.30) )| o 22, e € e ]
where

hfl —1
B (1)

C’mal‘ . T
ye(_lv_%] y + 1

Using the equality

(2.31) cosh ™ (Jy|~) =log Iy~ + VW7 = 1),

we can check that 0 < ¢pee < 00. By substituting z = —£=x,(y) and using (2.30)

we can deduce from [25, Lemma 2.12] that if y € (—1, —3] and

oy i ((2min )2 — 17 4 12y/2)
2.32 I R !
(2.32) ly+1] 2 cosh?(2¢maq £22) cosh? (Cpaq 222

then

(2.33)

ou 0%u 0%u ou
%(l’()(y), Y, 60)@(1’0 (y)a Y, emin) - @@0(9)7 Y, 60)8_$(x0 (3/)7 Y, emin) > 07

ve[) S (emirw emax]:

where ¢; € Ry is the generic constant independent of any parameter, introduced
in [25, Lemma 2.12]. We emphasis that ¢; is independent of E. We can derive from
(2.28), (2.33) that

ou 0*F,, 0F 0*u
%(-xO(y)a Y, 6min)W(£0 (y)7 y) < W(xﬂ(y)a y)ﬁ(xotl/)a Y, 6min) =0.
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Since a—Z(:lco(y),y, emin) > 0, 6;§§° (xo(y),y) < 0. Essentially we have proved

B
that if y € (—1,—32] satisfies (2.32) and z € (COShflqylfl) cosh " (1y| )

2 €max ’ €min

0l (19,y) = 0, then 3;55” (z0,y) < 0. Take any y € (—1, —1] satisfying (2.32). Set
h'(Jy|™") cosh™'(|y|™* OF
. { . ( (1y/™) cosh™(ly >) o
€mazx Emin ox
We have already seen that M # (). Suppose that §M > 2. Since x %L;O(x,y) :
R-y — R is real analytic, not identically zero, there exist xi,xo € M such that
r1 < xy and x ¢ M for any x € (x1,72). However, the property 825;" (zj,y) <0
(7 = 1,2) implies that there exists x3 € (xy,x3) such that z3 € M, which is a
contradiction. Therefore M = 1. Combined with (2.29), the above argument

ensures that the claim (2.27) holds with yo = min{—%, =1 + 2}, where ¢,(€ Rxo)
is the right-hand side of (2.32). Lemma 2.7 concludes the proof. []

) satisfies

2.4 Existence of SPI: non-critical case

Our purpose here is to prove existence of a SPI under the condition &= <

V17 — 124/2, or more precisely the following proposition. Remind us that the

set {Fss} 1 C E(emin, €maz) 18 constructed in Lemma 2.9.
"7 5€(0,50),6€(0,1—s¢)

Proposition 2.12. Assume that {2 < /17 — 12v/2. Then there exist so € (0, 1)
1
and § € (0,1 — s§) such that the following statements hold.

(i) For any Uy € (0,222), ¢ € {r, f} there exist U € [~Uy,0), s € (0,s0) such
that (SPI)¢ holds with U and Es5(€ E(€mins €maz))-

(ii) For any Uy € (0,2i2) (p,n) € {(+, =), (=, +)} there exist U € [~U,,0), s €
(0,50), n € 4AN+2 such that (PT)y () holds with U and E, 5(€ E(emin, €maz))-

Remark 2.13. The free energy density Fg(f5,t) was derived from the many-
electron system in [25, Theorem 1.3 (ii)] for any E € E(emin, €maz), U € R satis-
fying (1.9). It is not trivial if (U, E;s) introduced in Proposition 2.12 (i), (ii) sat-
isfies (1.9). If so, the existence of SPT and HOPT is guaranteed by the proposition
while the derivation of the free energy density is justified by [25, Theorem 1.3 (ii)].
According to the proof of Proposition 2.12, the choice of s € (0, sy) depends on
Up. However, Lemma 2.9 (i) states that (1.10) with £ = E, s is independent of s.
Assume &2z < /17 — 12y/2 and let sy € (0,1), 6 € (0,1— sé) be those introduced
in Propos?flizon 2.12. It follows in particular that

((1.10) with E = E,z) = ((1.10) with E = Es ;)

for any s € (0, s9). Take any

2d d+1
UO € 07 T mm{emm, Cmin )

where ¢ € (0,1] is introduced in [25, Theorem 1.3] and depends only on d, b,
(v;)4_, and (1.10) with E = B 5. Then the following statements hold true.
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o For any & € {r, f} there exist U € [-Uj,0), s € (0, s9) such that (SPI)¢ holds
and Fg(3,1t) is derived from the many-electron system by [25, Theorem 1.3 (ii)]
with U and Ej.

o For any (p,n) € {(+,—),(—,+)} there exist U € [~Uy,0), s € (0,50), n €
4N + 2 such that (PT), ) holds and Fg(3,t) is derived from the many-
electron system by [25, Theorem 1.3 (ii)] with U and FE.

Throughout this subsection we assume that £ < /17 — 12v/2. We need to
introduce a function in order to construct the proof of the above prop081t10n Let
us set the convergent power series p(x,y, 2) (z,y,2z € C) by

S <y+1)n71 n. n,n
p(I,y,Z) :Zw2 zZ .

The function @(zx,y, 2) is defined in the open set D of C* as follows.

D= {(z,y,2) € C* | [L+yp(z,y,2)||1 + p(z,y,1)| > 0},
(1 +yp(z,y, 1)1 + p(x,y, 2))?
(L +yp(z,y,2) (1 +p(z,y,1)*

w(z,y,z) = —

In fact in [25, Subsection 2.2] the function @ was introduced as an analytic contin-
uation of the function w : D — R defined by

(1+ ycosh(y/y F 1v20)(y + cosh(y/y F 1v2zx))?
(1+ ycosh(vy T Iv2z2))(y + cosh(v/y + 1v22))?’

D = {(x,y, z2) ERog X (—=1,0) X Ryg | z < (Cosh_l(]y|_1))2}.

(2.34) w(x,y,z):=—

1
2z(y+1)

Here we presented the full definition of these functions in order to make clear the
continuity from the previous construction [25, Section 2|. The function w will be
recalled in Subsection 2.5.

Set n : (em;") (€ (0,17 — 12/2)). Here we only need to use the function

z— w(z,—1,m): (0,77) = R, which is characterized as

(z —1)(1 + nz)?
(1 —nz)(1 +z)*

1])(:6,—1777) = € <O77771)'

Since (1;7”)2 > %, we can define the real numbers a, (), a—_(n) by

1 1
147 1+7\> 1\° 1+7 1+7\> 1)\°
wty = o (F) =) = - () <1
’ 61) ( 6 U Gr) Gry U
The behavior of the function w(-, —1,7) is the most important information to prove

Proposition 2.12 and is summarized in [25, Lemma 2.18]. Here we restate it for
readability of the present paper.

(2.35) L <a-(n) <ay(n) < n
g—l;(x,—l,n) >0, Vo € (0,a_(n)),
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w(z, —1,7) —/

S3

52

0 /i i i ;

Lai(n) a—(n) a+(n) az(mn)

Figure 3: The schematic profile of w(-, —1,n) in [1,77!).

(2.36) 2 (o tn), ~1m) =0,

20 1) <0, i € (o (n), 0. (n).
(2.37) 2 (astn), ~1m) =0,

S —1m) > 0, Ve € ()0,
(2.38) 0 <w(ay(n), =1,1) < wla(n),=1,n).

Since w(1, —1,1) = 0 and lim, ~,—1 W(z, —1,1) = +o0, there uniquely exist a;(n) €
(1,a—(n)), az(n) € (at(n),n™") such that
w(al(n)a _1777) = w(a+(77)a _L 77)7 'LD((IQ(?]), _L 77) = @D(af@?% _1777>'

In the following we fix

51 € (Oaw(%(ﬂ% _1777))a S2 € (@(fhr(??)a —1#7)7“7(@7(77)7 _1777))7
S3 € (w(a—(ﬂ)» _1777)’00)'

The schematic profile of the function w(-,—1,7) in [1,7!) is pictured in Figure 3.
We remark that Figure 3 is a sketch, not the exact implementation of w(-, —1,7).

We can prove the next lemma by combining Lemma 2.9 with the above proper-
ties of w(-, —1,n). Recall that the function Fj is defined in (2.25). Here we consider
(351 +1)7" as so introduced in Lemma 2.9.

Lemma 2.14. There exist yo € (—1,0), & € (0,1 — (351 + 1)=4) such that the
following statements hold for any y € (—1,yo], d € (0, o).
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Va < W ) < Va) < 2 < B < /2

Vy+1
cosh™ 1(|y|*1)
< i
T
(ii)
(2.39)
0F; y+1 1
(933' ( Cmazx Y, S3 + 1) > 07 vx € [\/2611(77)7 \/2(1—1—(77)]
(2.40)
anS VY +1 1 8F5 \/QT
. 2
. < — ar(n),y, 1> >0, 52 (o /20 (), y -0,
VS € [52, 83]
(2.41)
OFs (y+1 1
8_:1;< Cmaz 2 —(n)ayvﬁ) <0
(iii)
(2.42)
0F; y+1 1
ox ( Cmaz LY, s1 + 1) < 07 Va € [\/2a—<77)’ \/26L2(77)]
(2.43)
- 2 B - ol's 2
T ( Cmaz a (77)a978+1) 5 O < emax_ a2<7])7y, —S—|—1 <0,
vs € [517 82]
(2.44)
OFs (Vy+1 1
O < — 2a+(n),y, +1) > 0.
Proof. We can derive from (2.31) that
-1 _1
249 o

N1  Jy+1

It was remarked in the beginning of the proof of [25, Lemma 2.24] that for y €
(—1,0) sufficiently close to —1,

h—l —1
(2.46) cosh (™) _ 5
y+1

The claim (i) follows from (2.35), (2.45), (2.46) and that a;(n) € (1,a_(n)), az(n) €
(ay(n),n™1). Recall the definition (2.24). Observe that

oW 1—n% (a2 —
E(xJ\/ﬁ7 8) = —3)2 (S —w (57 _1777)) 3 v('1:75> € (07 277_1) X IR>07

(1+n%
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and thus by (2.38) and the choice of sy, s, $3

047) T (e 5s) > 0, Y € [VImGr), /2, (1)

—W(\/2a1(n),\/ﬁ,s) > 0, %—Z/(\/er(n),\/ﬁ, s) >0, Vs € [sg, s3]
(V2 ()i 52) < 0
1) <0, Vo € [V/3a (o), v/ Zas()]

—W(\/Za_(n),\/ﬁ,s) <0, %—Z/(\/Qag(n),\/ﬁ, s) <0, Vs € [sq, s9].
o (Vaas ) v s2) > 0

Figure 3 may help us understand the above inequalities. Lemma 2.9 (iv) implies
that

. OF; (\Jy+1 1 b oW
| 1 —
mé)ir(qlm 1 (y " ) 895 ( €max wY s+ 1 S + 1 al’ (I’ \/ﬁ7 S)

(1,6)€(—1,00x(0,1—($s1+1)” d)

uniformly with (z,s) in [\/2a1(n), /2a2(n)] x [s1, s3). We can deduce the claims
(ii), (iii) by combining the above convergent property with (2.47). O

The proof of Proposition 2.12 is based on Corollary 2.5, Lemma 2.8, Lemma
2.9 and Lemma 2.14.

Proof of Proposition 2.12. By Corollary 2.5 the claim (i) is equivalent to the claim
(ii). Thus it suffices to give a proof to the claim (i). Let yo € (—1,0), &y €
(0,1 — (351 + 1)~4) be those introduced in Lemma 2.14. Observe that for any

z € [v/2a1(n), /2a2(n)], s € [s1, s3], 0 € (0, )

Vy+1 1
y+1F5( i x, v, )
Cmaz s+ 1
b

s e— inf /W ZL‘/ S,
- (83 + 1)emaz 2/ €[\/2a1(n),\/2a2(n)] ( ’\/ﬁ’ )

s'€ls1,83]
V y + 1 / 1 b 1 / /
— sup \/y—l—lF(;( 'y, — Wiz, \/n,s)|.
’6[\/2&1[(?7)»\/]2!12(77)] Emazx s'+1 (5/ + 1)emax
s'e 51,83

We can apply Lemma 2.9 (iv) to ensure that there exist y; € (—1,y0], 01 € (0, do)
such that

v/ 1 1 b
F51< yt )>

inf W 2, \/n,s
T 2V + 1(s3 + 1D)eman o/ clvzartm.y/2azm)] (' v/, 5)

s'€[s1,53]

Y

b
Cmaz s+ 1

for any y € (—1,y1]. Take any Uy € (0, 222e2). By the above inequality there exists
Yo € (—1,y1] such that

Vs +1 1
(2.48) Fy, ( 52 Y2 1) > iR Yz € [v/2a1(n),\/2a2(n)], s € [s1, s3).
max 0
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Here we apply the inequalities given in Lemma 2.14 (ii) with 6 = 01, y = y. By
(2.39), (2.41) and the fact that s — minge; %(m,yg, SJ%I) is continuous in [ss, s3]
for any closed bounded interval I C R-( there exists § € (sq, s3) such that

_ OF;, ( 1 )
min 3 S Y2y, —— . =0.

Moreover, by (2.40) there exists

e (5 5

emaz

OFy, 5 1

ar \"" 51

Furthermore, since x — a L (2, Yo, 5 +1) : R.¢p — R is real analytic and not identi-
cally zero, there exists € € R.( such that

(#—e,2+e)C (—W\/ml(n), /o2t 1\/2a+(n)> :

emaz emam

such that

OFy, 1 . . .
oy ( ' Y2, A_'_l) >0, Ve € (z —e,2+¢)\{2}.

This means that Z is a rising SPI of Fy, (-, ya, s+1) Since Fy, (-, ya, SJ%I) = Fool(-y2)
with E L € E(€min, €maz), the above property and (2.48) enable us to apply

Lemma 2. 8 (i) to conclude that there exists U € [—Uj,0) such that 7(-) has a
falling SPI in (0, 5,.).

Using Lemma 2.14 (iii), Lemma 2.8 (ii) in place of Lemma 2.14 (ii), Lemma
2.8 (i) respectively, we can argue in a way parallel to the above argument to prove
existence of a rising SPI of 7(-) for some U € [-Uj, 0), E?IP(;I € E(emin, €max) With
s € (81, 82).

We have proved the claims with sy = (%sl +1)7L, 6 = 4y. O

2.5 Existence of SPI: critical case

Here we prove existence of a SPI when 2::;: = 17— 12V2.

Proposition 2.15. Assume that 722 = /17 — 12V/2. Then the following state-
ments hold.
(i) For any Uy € (O,Qe%""), ¢ € {r, f} there exist U € [-U,,0), s € (0,1),
5 e (0,1— sé) such that (SPI)¢ holds with U and E, 5(€ £(emin, €maz))-
(ii) For any Uy € (0,%in), (p,n) € {(+,—), (=, +)} there exist U € [~U,,0),

€ (0,1), 6 € (0,1 — s4), n € 4N + 2 such that (PT)y o holds with U and
Es,5(6 g(emina emax))-
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Remark 2.16. As we can see from the proof, we have to choose s € (0,1), § €
(0,1 — s4) after fixing Uy. We cannot prove that the condition (1.9) holds for the
pair (U, Es ) introduced in the proposition. Accordingly we cannot prove existence
of a SPI of 7(-) : (0, 8.) — R or existence of a HOPT driven by temperature while
justifying the derivation of Fg(f,t) from the many-electron system in the case

fmin — /17 — 124/2. In the case Z:—u’; < V17 — 12¢/2 we can choose § before fixing

€max

Uy as claimed in Proposition 2.12, and thus we can reach the positive conclusions
stated in Remark 2.13.

Set 1y := 17 — 12v/2, ag := 3 + 2v/2. As a preliminary, let us recall properties
of the function

(x = D1 + nox)”

Aotz & €0

ZIJ(ZC, _17 770) =

which form the basis of the proof. Observe that

oW 3no(L —mo)(L+mn0z) [ 5 mMmo+1 1
. —1 - _ -
ox (ZL’, ) 0) (1 _ 77017)2(1 + l’)g T+ ;

310 Mo
which is equal to [25, (2.47)], and

I2_770+1 1 2

T+ —=(T—ap)".
310 o ( 0)
These imply that
ow _
(2'49) %($7 _17770) > 07 Vo € (07770 1)\{&0},
ow
%(ao, _17770) = Oa
and thus
1. 5 (1
(25()) 571)(&0,—1,7]0) < w(a()?_]-?n()) <w 5770 7_]-7770 ;

sup w(z,—1,19) < 2w(ag, —1,m0),
z€[1,a0]

—_

inf  w(x,—1,m9) > =w(ag, —1,1m).

xe[ao,%nal]

[\)

In the proof of Proposition 2.15 we essentially use [25, Lemma 2.15], which
concerns properties of the function w(x,y,n) defined in (2.34).

Proof of Proposition 2.15. By Corollary 2.5 the claim (i) is equivalent to the claim
(ii). Thus it suffices to prove the claim (i). We apply Lemma 2.9 (iv) with sy =
(14 3w(ag, —1,7m0)) " to ensure that there exist &; € (0,1— (14 3w(ag, —1, 7)) 4),
y1 € (—1,0) such that

VUt 1 1
y+1F5( YTy, >
Crmaz s+1

b o~ 1
inf w (ZL’,,\/%, 5@(%,—17770)) ’

> =
~ 2(2w(a0, —1,m0) + Demaz ciya, fon 1)
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1. N
Va S [\/_ 2770 ] <_17y1]7 RS |:§w(a07_17770)72w(a07 _]-7770) ) J € (Ouél]

Take any U, € (0, 26%) The above property guarantees that there exists ys €
(—1,y1] such that

(2.51)
Vy+1 1 2
F >
5( Cmaz x,y,s+1 — Uy’

1. .
Vo € [\/57 2770_1], y e (—1,ys], s € {ﬁw(ao,—l,ng)ﬂw(ao, —1,m0)|, 0 € (0,01].

It follows from [25, Lemma 2.15] that there exists y3 € (—1,y»] such that for any
ye (=1,us
1
20y +1)
0 < w(ag,y,n0) < 1.

(cosh™ (ly[71))* < ap < (cosh™ (Jy[71))?%,

1
2no(y + 1)

Moreover, there exist

1(0) € (g o ol a0 ) o) € (a5 cosh ()Y
such that
(2.52) w(x1(y),y,m0) = w(ao, y,m0) = w(x2(y), y,mo),

w(xvyanO) > w(a07y7770)7 Vr € (Il(y)aa0)7
w($7y7770) < w(a07y7770)7 Va € (G/vaQ(y))‘

We can deduce from (2.46), (2.50) and the property

(2.53) lim  sup |w(z,y,m) — W(x,—1,10)] =0

YN oe, Ly ]
that there exists yy € (—1,y3] such that
1

1 < ——(cosh™(Jy|™1))?,
1. (1
§w<a07 _17770) < w(a07y7770) <w 5770 7_17770 ’
- . 1
(2.54)  sup w(z,y,m) < 2w(ag, —1,m0), inf  w(z,y,n) > =w(ag,—1,m0)
x€[1,a0] z€lao, 315 "] 2

for any y € (—1, y4].
Let us prove that there exists § € (—1,y4] such that
1

5770 g

Set & := 1(w(dny", —1,m0) — W(ag, —1,m0)). It follows that

(2.55) 2o(f) <

1
(2.56) w(ag, —1,m9) + & < W (5170_1, -1, 770) )
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By (2.53) there exists ys5 € (—1, y4] such that

(257) w(a07yan0) < ?I)((lo, _17770) + 57 vy S (_1795]

Let us take ¢ € Ry so that

We define T': (—1,y5] — R by

T(y) = 1 + ycosh(vy + 1v2x)
bl 1+ ycosh(vy + 1v2n0x)| |
x=n, —¢€
. (y +1)?
(y + COSh( VY -+ Ly 2$)>2 x:727]0(1y+1) (cosh™(Jy|=1))2
Observe that

S (cosh ™ (Jy )P <yt — e < 5 eosh™ (y] 7)),
2(y +1) 2m0(y +1)
w(x,y, >T(y), Vo € |yt — e, ————(cosh™*(|y| " 2>, e (—1,ys],

() 2 (), o € 15" =65 sfoost™ (1)) w € (~L]

1

lim T(y)=—"—————>w|-n", —1, .

o W)= e = O\t T

These properties plus (2.56) imply that there exists yg € (—1,y5] such that
(258) w($ay7770) Z 71](&0,—1,770) +€7

Vo € |t =<, <cosh—1<|y|-1>>2) Cye (1

2no(y + 1)

On the other hand, since

lim sup \w(x,y,n0) —w(x,—1,m0)| =0,

Y1 1, -1 —1
ye(—1yg] T€[37M0 Mg —€]

by (2.49) and (2.56) there exists y € (—1, yg) such that

. - ., -
(259> w(%yﬂlo) 2 ’LU(G[), _17770) + 57 Vr € |:§770 15770 t— €:| .

By combining (2.57), (2.58) with (2.59) we obtain that

1

w(x7y7770) > w(a()ngnO)a Va € [—770_17

2 foos™ (317

2n0(y + 1)
If 2o(9) > 510"
w(xQ(g)a ?37 770) > 'lU(CL(), g) 770) = w(l‘Q(@)a Qa 770)7

which is a contradiction. Therefore z5(§) < 7,

43



Let us set
(ag, —1,m0),

a(
( inf (z,9,m0) +w(ao, ¥,M0)
x€lap, 12(21)]

( sup  w(z,7,n0) +w(a0,?),770)) )

z€[z1(9),a0]

DO l\DI»—* 1\3|>—~[\3|>—~

I

(ag, —1,m0)-
We can see from (2.52), (2.54), (2.55) that

(2.60)

s1 < el inf @] w<$7@7 770) <85 < ZU(CLO, g?UO) = ?U(Il@)aﬂa 7]0) = w(xQ(y)7y7 T]O)
r€lag,r2

<sg< sup w(z,Y,m) < S4.
z€[z1(9),a0]

Observe that

aw . ~ 1+ ycosh(y/2(y + 1)) z? B
(2.61) S -(Vy+1r,y.Vz5) 0+ cosh(v/20y T Do))? ( (Q,y, ))

for any (z,y,2) € Rog x (—1,0) x Ry satisfying x < mcosh "(Jy|™Y). Let
&1 € (21(9), a0), &2 € (ag, z2(g)) be such that

(262) w(£)17 gv 770) = max ’LU(.CE, Q? 770)a w(ﬁan g? 770) = min lU(.Z', Qa 770)

z€[z1(9),a0] z€[ag,z2(7)]

Combination of (2.60), (2.61), (2.62) implies that

ow
Ee — (Vi + 1z,9,/M0, 1) <0, Va € \/2a0,\/2x2
(9W
\/y+ V2a07y \/_07 \/y_'_ V2I’2 y \/%7 <07 vs€[31782]7
(9W - .
a_ \/y+1 2x27y7\/%752>>07
8W

o — (VU + 12, 9,/Mo, s4) > 0, YV € [\/221(7), V2a0]

ow — _ X

_( V y+ 1 V 2x1(y)7y7 V 770)8) > 07 _(\/ ?J+ ]-\/ 2a07y7 \/%7 S) > 07 Vs € [83784]7
Ox ox

ow —

%(vyﬂL 1221, 9, /N0, 53) <0

Here we apply Lemma 2.9 (ii), (iii) with so = (1 + 3w (ag, —1,79)) " to derive from
the above inequalities that there exists & € (0,4;] such that

oF;, . _ -

T5(9:7) € CRoo x [(51+ )7 (s + 1)),

FS('7 7, 8) S OM(R>0), Vs € [(84 + 1)_1, (81 + 1)_1],

(2.63)
OF; (Vi+1 1 V2a
5( yr x,g),s +1> <0, Vx €] 2ao,\/W]>
1

ox Cmaa
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(2.64)
OF; y+1 1 OF; (Vi+1 _
Or 2a0,7 <0, =~ 2 —— ) <0, Vse
ox ( €maz 0, S + 1) ’ ox Cmaz $2(y>7y7 1 y VS [817 32]7
(2.65)
OF; (Vi+1 — 1
. V2 >0
637 ( E€max x27y’ 2 + 1> ’
(2.66)
OF} g+ 1 1
] >0, Vo € [\/221(9),V2

Ox ( €maz “Y Sa4+ 1) v [ xl(y)’ a0]7
(2.67)
OFs (Vy+1 s 1 OF; (Vi+1 1
o 201(9), 9 >0, =~ V2ag, 9, —— | >0, Vs € [s3,54],
ox ( Crmar ffl(y)a Y, s + 1) " Ox e o, Y, s+ 1 , VS [83 84]
(2.68)
OF; g+ 1 1
_6( y+ V2£17g7 )<0

x Emax S3 +1

By (2.63), (2.65), (2.66), (2.68) and the fact that s > max,es 22 (z,§, 717), s =

minge; %(m, 7, SJ%l) are continuous in [sq, s4] for any closed bounded interval I C
R.q there exist §; € (s1,82), S2 € (83, 54) such that

OF} ( 1 )
max —— (T, Y, = =Y,
ve [T om0, 2 3| O 11
. 8F5 ( R 1 )
min - | TY, % =
ve [ LI /30, (5), YT g oz o+ 1
Moreover, by (2.64), (2.67) there exist
Vy+1 — Vi +1 Viy+1 y + 1 ~
G € ( ey V2x1(9), ey VQGO), G2 € ( ey V2aq, 2552(3/))
such that
OF: 1
2.69 -2 j, —— ) =0
( ) 8m (CQaya §1+1> )
OF: 1
2.70 (G, 9, —— ) =0.
(2.70) 9z <<1y82+1>

Furthermore, since %(-, 7, 11) € C¥(Rsp) (j = 1,2) and these functions are not
z 35

identically zero, there exists € € R.( such that

(GL—&a+éC ( g+1v2$1<§)a 6?34—1\/%)’

1
+1

OF;
ox

~

7y7

A~

59

(2.71)

(1

) >0, Vo € (G — &G+ NG,

emaa:

(C2—&G+é)C (
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(2.72) % (x,g), ﬁ) <0, Vo € (G — & G +8)\{¢}-

Finally the properties (2.51), (2.69), (2.72) enable us to apply Lemma 2.8 (ii) to
ensure that for £ 1 ; (€ E(€min, €maz)) and some U € [—Up,0) 7(-) has a rising
3 +1°

SPI in (0,4,). Similarly by (2.51), (2.70), (2.71) we can apply Lemma 2.8 (i) to
conclude that for £ 1 s (€ E(emin, €maz)) and some U € [—Up, 0) 7(-) has a falling
Go+1°

SPI in (0, 4,). Thus the claim (i) holds true. O

2.6 Proof of Theorem 1.7 and Theorem 1.8

We can complete the proof of Theorem 1.7 and Theorem 1.8 by applying Proposi-
tion 2.11, Proposition 2.12 and Proposition 2.15.

Proof of Theorem 1.7. The equivalence between the claim (i) and the claim (ii) was
proved in Corollary 2.4 (1). By Proposition 2.12 and Proposition 2.15 the claim
(iii) implies the claim (ii). If the claim (iii) does not hold, by Proposition 2.11 the
claim (ii) does not hold. Therefore the claim (iii) is equivalent to the claim (ii).
The proof is complete. O

Proof of Theorem 1.8. Corollary 2.4 (2) ensures the equivalence between the claims
(i), (ii), (iii). By Proposition 2.11 the claim (iv) implies the claim (iii). It follows
from Proposition 2.12, Proposition 2.15 that if the claim (iv) does not hold, the
claim (iii) does not hold. Thus the claim (iv) is equivalent to the claim (iii), which
concludes the proof. O

3 Specific models

Our main theorems are claimed for the general set of free dispersion relations
E(€min, €maz)- One natural question is whether HOPT occurs in a specific model
belonging to £(€min, €mas) by varying parameters on which the model depends. We
focus on the following 2 models of £(emin, €maz)-

(1) Ford e N,b € Nxp, b/ € {1,2,--- ,b—1}, abasis (V;)7_, of R, €min, €mar € R>o
with Cmin S Cmazx

emam[’ 0
Ey(k) = ( 0 b - ) k € R

(2) For t € R>g, €min € Rxg

Eyi(k) = t(cosk + 1) + emin, k €R.

The model (1) is actually independent of the variable k. It is a one-particle
Hamiltonian of non-hopping multi-orbital electron. In the model (2) d = b = 1,
€maz = 2t + emin. It is the dispersion relation of a free electron hopping between
nearest neighbor sites in the 1-dimensional lattice Z. In fact these models were
studied in [25, Subsection 2.3] in terms of uniqueness of local minimum point of the
phase boundary. Our aim here is to study these models in terms of SPT and HOPT.
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By Theorem 1.8 we know that if |U] is sufficiently small and £=i= > /17 — 12v/2,
the temperature-driven phase transition is of 2nd order, and thus there is no HOPT
in these models. However, our main theorems do not imply existence of a HOPT in
these specific models even if 2 < /17 — 121/2. Tt is advantageous that we can
use the technical lemma [25, Temma 2. 24] to analyze the model (1). It turns out
that the model ( ) shows quite rich behavior in terms of SPT and HOPT, depending
on = and bb Also we can deduce non-existence of SPI in the model (2) from
the proof of [25, Proposition 2.26].
Concerning the model (1), we want to prove the following proposition.

Proposition 3.1. € [3—2v2,00). Then for any emin,
emar € Rsg satisfying emin < €mar there exists Uy € (0, 267}“’") such that for
any U € [—U,,0) 7(-) has no SPI in (0, 3.).

(ii) Assume that b;—,b/ € (33— 2v/2). Then for any emim € Reg, Uy € (0,26%1‘”)
there exist e, ey € (0,17 — 12¢/2), Uy, Uy € [=Uy,0) such that ey < e, and
if fmin = ey, U = Uy, 7(-) has a rising SPI in (0, B.), if 22 = ey, U = U,

(- ) has a falling SPI in (0, 8,). "

(iii) Assume that bg,b, € (0,1]. Then for any e € R, Uy € (0, 2min) there

exist e3 € (0,4/17 —12v/2), U € [~Uy,0) such that if cmin = e3, 7(-) has a
rising SPI in (0, .).

We can derive the following corollary from the above proposition and Theorem
1.6.

Corollary 3.2. (i) Assume that bg—,b/ € [3—2\/5, 00). Then for any €min, €maz €
Ry satisfying emin < €masr there exists Uy € (0,26%) such that for any

U € [~Uy,0), (p,n) € {(+,—), (=)}, (B,t) € Qo (PT)Z(pm)(ﬁat) holds.

(ii) Assume that b;—/b/ € (£,3—=2V2). Then for any emin € Rso, Uy € (0, 2emin)
there exist e, ey € (0,17 — 12y/2), Uy, Uy € [~Uy,0) such that ey < e, and
if min = e, U = Uy, (PT)p,4,—) holds for some n € 4N + 2, if fmin = ¢y,
U =0, (PT)p,(—4) holds for some n € 4N + 2. -

(iii) Assume that Z¥ € (0, t]. Then for any emm € Rsg, Uy € (0, 22in) there
exist e € (0,17 — 12/2), U € [~Uy,0) such that if i = o3, (PT)n,(+,-)

holds for some n € 4N + 2.

The proof of Proposition 3.1 is based on Lemma 3.3 below. Recall the definition
of the functions w(z,y, z), w(x,y, z) and their properties summarized in front of
Lemma 2.14 to understand the statements and the proof of the lemma. In addition
we will use the following properties.

(31) lim w(aﬂ-(n)a -1, 7)) = lim w(a—(n)a —1, 77) =3 - 2\/57
n,/17—-12v2 n,/17—-12v2
1
(32) 7171{‘%@(@—(77)7 _177]> - §7 7171{‘%@(@-4-(77)7 _177]> - 07

which can be derived from the facts that

lim «a = lm a(n)=3+ 2\/5,
n,17—12v2 +(77> n,17—12v2 (77)
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1
lima_(n) =3, lima = +o00, limna =—.
lima_(n) =3, lim a.(n) lim na.(n) = 3

Moreover we need that
d

(3.3) d—nw(ag(n), —1,7) >0, V6 € {+,—}, n € (0,17 — 12V2).

This can be confirmed as follows.
ow (x — Dz(l + 22)(3 — zx)

(3.4) a(x,—l,z) R P g >0, Yz € (0,1), z € (1,271,
and thus by (2.35), (2.36), (2.37)
d% i(as(n), —1,m) = %(aa(n), —Ln)cfl—z;(n) + %(aa(n), ~1,m)
= Z—Z(ag(n), —1,m) >0, ¥n € (0,17 — 12\/5), e {+, -}

Lemma 3.3. (i) For any s € (%,3 — 2V/2) there exist m1, 1, 13, na € (0,17 —
12¢/2), y1 € (—1,0) such that ny < n3 < 1y < n1, ar(nz) < ;' and for any
ye (=1,

hfl —1
cosh ™ () 5
Vit

Wl m) > 5, Yo € | o) + anm), 3lastm) + )]

w (5a-0n) + acm).n) > s, w (Fartm) + o7)m) > 5, ¥ I
w(a(n2),y,m) < s,

L a ) + a+<n3>>] ,

1
o) <5, ¥ € |30+ a(m).

w (5000t ) < v (G- + alm)n) < s ¥ €
w(a—(n3), y,13) > s.

(ii) For any s € (0, 1] there exist 15, ng € (0,17 — 12v/2), yo € (—1,0) such that

N < 15, ai(n) <ns ' and for any y € (=1, yo]

cosh " (Jy| ")
—— > 2,
vy +1

o) > 5, Yo € |5(a-(m) + o w3 m) + 157)]

w <%(a—(776) + a+(n6)),y,n) > 5, w (%(m(ne) + ngl),y,n) > s, Vn € 16, 7s],

w(as(n6),y,M6) < 5.

Remark 3.4. By using the inequality cosh™(|y|=") /vy + 1 > v/2 we can check
that the variable (x,y,n) belongs to the domain D where the function w is defined
in the statement of the above lemma.
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Proof. (i): Take any s € (%, 3 —2v/2). We can deduce from the properties (2.38),
(3.1), (3.2), (3.3) that there uniquely exist 7y, 7 € (0, 17—12+/2) such that 7}, < 7y,

TI)(CLJF(?%), _17 771) = ’II)(CL,OA]Q), _17772) =S.

Moreover, by the profile of w(-, —1,7n) described in Subsection 2.4, (3.3) and (3.4)
there exists small € € Ry such that the following inequalities hold.

ay () <

. 1 R R 1 . L A
(o, L) > 5, Y € | 3ai) + asli)) = & (e () + )+ €] 0 € i+ o)

(1 . . R (1 . L R
@ (30 + ax@). =11 ) > s, 6 (Glari) + i) -1 ) > s

w(a+(n)7 _1777) < s, V77 S [ﬁl - 57ﬁ1)'

@l ~1,0) <5, ¥ € [0+ a ) = 2 5la-(i) + () +e] 1€ o)

2 2
w(a*(n)a_lﬂﬁ > 8, VU € (7727772 "—5]-

i (50+ 0 ~1e) < s, 0 ( Gla(ie) + i) 1) <

Then we can choose 1, € (7,17 — 12v/2), 1, € (0,71) to be close to #; and
N3 € (2, 17 — 12v/2), ny € (0,7,) to be close to 7, so that ny < 13 < 72 < 11,

(3.5)

a(12) <mi,

(3.6)

o, ~1,01) > 5, ¥ € | a-() + o ), o)+ )
(3.7)

w (%(a—(nz) +ay(n2)), —Ln) > 5, W (%(m(nz) +0 ), —1777) > 5, ¥n € [n2,m],

(3.8)
w(a+(772)7 _17772) < S,

o ~Lon) < 5, ¥ € |30+ a-(m) 5la- () + e (m)].

@ (504 atm) 1) <5 (lo-m) +aclm)~1n) <. ¥ € el

@<a—(773)7 _17773) > S.

The claimed inequalities follow from (2.46), the above inequalities and the uniform
convergence properties

(3.9) lim, sup w(z, y,n) — @(z, —1,1)| =0,
UNTL e (a () oy (n2)), L (ag ()0 1]
n€(ng.m1]
lim sup lw(z,y,n) —w(z, —1,1)| = 0.
UNTL aeL (ol (ng)). 4 (o (ng)+ay (1))
n€lng,m3l
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(ii): Take any s € (0,1]. By (3.1), (3.2) there exists 93 € (0,17 — 12v/2) such
that @(ay(s), —1,7M3) = s. We can choose 1, € (3,17 — 12/2), 1, € (0,73)
sufficiently close to 73 so that the same inequalities as (3.5), (3.6), (3.7), (3.8) hold.
Then by applying the uniform convergence property of the form (3.9) we obtain
the claimed inequalities. ]

Proof of Proposition 3.1. We set

b—V ermin \ >
§ = =
T P

during the proof. First of all we note that

(3.10)
sinh(zEy(k)) b

Foo s =D dk T - mazrty Y 19/

(@9) d/go ' ((y+cosh(be(k)))Eb(k) o (a9, V11, 8)
which together with (2.61) implies that
(3.11)

Foo o 1 h \V 1 max 2 2

O (y + cosh(y/n(y + 1)emaa))? 2

Cosh_1(|y|1))
Vye (-1,0), z€ |0, ——— | .
We will also use the following convergence property.
(3.12) l{lm1 Vy+1W (W y+ 12y, VE, s) :/I/I?(x, VE, s)
N

locally uniformly with (z,£) € Ryy x Rxy.
(i): Assume that s € [3 — 2v/2,00). If omin > /17— 12v/2, Proposition

2.11 ensures the result. Assume that f2o = /17 — 12y/2. Here we apply [25,
Lemma 2.24 (i)] to guarantee that

(3.13)
Jyp € (—1,0) s.t

¥y € (1] 3oy >e(2 (st ) s ot 1)) s
w(x,y,m) <s, Vo € (2 cosh Yyl™H)?, O(y)),

w(zo(y), y,7m)

w(x,y,n) > s, Vo € (xo )(coshl(\y|1))2) :

Since

1 1
%(\/ijlx,y) >0, Vo € (O cosh™ (Jy|~ )]

8:(; CmazVY + 1
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OF., cosh™ (Jy|™)
——(y/ lx,y) <0, Vo € | ————F———,

for any y € (—1,0), combination of (3.11) and (3.13) proves that for any y € (—1, yq
there exists & € (W1 cosh Z(W)y gy that

€maz €min

OF,,
Ee —>(z,y) >0, Vx € (0,20),

0F .
%(m()ay) = Oa

aai;o(x,y) <0, Vz € (29, 00).

Now the assumption of Lemma 2.7 with S = {E}} is satisfied and thus the claim
follows from the lemma in this case

Assume that &=z < /17 — 12y/2. By (3.1) and (3.3) s € (@(a_(n), —1,7), 00).
Thus we can apply ‘25, Lemma 2.24 (11)] to ensure that the property (3.13) holds.
Then by repeating the same argument as above and using Lemma 2.7 we can deduce
the claim in this case as well. The proof of (i) is complete.

(ii): Assume that s € (%,3 — 2v/2). Take any en;, € Ry and Uy € (0, 2min),
Let 11, 12, 03, ma € (0,17 — 12¢/2), 41 € (—1,0) be those introduced in Lemma 3.3
(i). We can see from (3.10) that for any

min min 1
emax6|:6 76 :| WS \/ o 772’\/(1-"-772 +Th >y€(_170)
\ M /T2 €max €max
(3.14) y+1Fe(Vy + 1z,y)
NS
Emin xe[\/W7 a+(n2)+ﬁl_1]
£€[m2.m]

By the convergence property (3.12) there exists yo € (—1, 1] such that for any
y € (=1,]

(3.15) inf VU WGy + 1z,y, V€, s)

§€[n2,m]
1

Z —_ f W(I7 \/gv S)'
ze[ 1+a_ (7]2 ay (n2)+ny 1
§€[m2,m]

We can derive from (2.46), (3.14), (3.15) that there exists y € (—1,y2] such that

(3.16)

V1+ta_(n) Vap(n)+mn'

Y
emaa: emaw

— 2 Corin Cmi
FOO :l/)_'_ 13773) 2 _7 vemax E { m2n7 mzn] ) x
( ) U NIRRT

(3.17)

cosh™ ' ([3]~)
> V2.
Vi+1
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It follows from the inequalities claimed in Lemma 3.3 (i) that there exists 7; €
(m2,m1) such that

min w(xayvnl) =S,
z€[3(a—(n2)+ay (n2)),4 (ay (n2)+ny )]

w (50t + astm)odn ) > 5w (Glartm) i) > s

Let zg € (3(a_(n2) + a4 (1)), 2(as(n2) +n7")) be a minimizer. Set

e _ Cmin . 2(@ + 1>$0
e 771 ’ €max .
By (3.16)
. 2
(3.18) Foo(2,9) = —.
Uo

Observe that by (3.17)
V2rg _ Vai(m) +ut V2t V2t V2 coshTi(jg )
< < < = < = )
Emaz €maz €maz Emaz Emin CminVY 1
and thus by (3.11)

OF,,
ox

1+ gcosh(r/2n (9 + 1)z L
i N J ( Anlfy ) 0>2 (8 - UJ(ZU(), Y, 771)) = 0.
(¢ + cosh(y/20: (5 + 1)x0))

(3.19) (£,9) = b

We remark that by (3.17)

V2t Do < A+ Dlas(n2) + ) < /200 + Dn < /205 + 1)

< cosh™'(|g[7"),

and thus

1 + g cosh(+/27: (g + 1)xg) > 0.

We can deduce from this inequality and the definition of o that there exists ¢ € R+
such that %= (z,§) < 0 for any « € (& —£,2 +¢)\{2}. This together with (3.18),
(3.19) enables us to apply Lemma 2.8 (ii) to conclude that there exists U € [—Uj, 0)
such that 7(-) has a rising SPTin (0, 8.). Remind us that &2 = /i € (\/1, /71)-
The existence of a rising SPI is now proved with e; = /7;.

The existence of a falling SPI can be proved similarly. However, we provide the
proof for completeness. We can derive from (3.10) that for any

VIta(m) Va(m) talm)|

emax ema:v

€min CEmin
, T €

€maz € y T —
[\/% van
y+1Fe(Vy + 1z,y)

b/ i~
2—774 inf \/y—i_lW(\/y_'—lxaya\/EaS)'
Emin  wel\/1+a_(n3),\/a— (n3)+ay (n3)]
€€[ng,m3]
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Application of (3.12) yields that there exists y3 € (—1,y1] such that for any y €
<_17 3/3]

inf \/y—l—lVV(\/y—i-lx,y, \/g,s)
e€ly/14a_(n3).\/a— (n3)+ay (n13)]
£€[ng,m3]

1 . —_~
> — inf W (x, V¢, s).
2 wel/Tra_(n3).\Ja_(n3) Fag (m3)]
€€ng 3]

We can deduce from these inequalities and (2.46) that there exists § € (—1,ys3]
such that

(3.20)
= ~ 2 Emin  Emin \/1 +a- (773) \/(l_ (773) + a+(773)
Fo(Wy+12,9) > —, Vepur € | —=, —= |, T € , ;
( Y y) UO |:\/ UE] vV 7)4:| Emax Emazx
(3.21)
cosh™ (|5 ™")
— 2 > V2
Vit

The inequalities of Lemma 3.3 (i) imply that there exists 7o € (4, 73) such that

max W(l’,g,fh) =S,
z€[L (1+a(13)), 4 (a— (13) +a+ (13))]

1 - 1 -
w (50 asm) g < s, w (G- + 0 g <
Let o € (5(1 4 a—(n3)), 3(a—(ns) + a;(n3))) be a maximizer and set
€min  ~ Q(g + 1)'%0
Cmag = —m, T =
\/% €max
By (3.20)
- 2
(3:22) Fali) > =
Uo

Moreover, by (3.21)
V2 _ Va-(m) +alm) _ V25 V20,0 V2 cosh (gl
emaz emaz emaz emam emzn emZTL V g 1 ’
and thus by (3.11)

0F  _ . , 1+ gcosh(y/2M2(7y + 1)Z0) R
’ X =b S —w(To,Y,72)) = VY.
(3.23) Ox (#9) (9 + cosh(~/272(y + 1):30))2< (Fo.3:2)) =0

By using (3.21) again we can derive that

V20§ + 1)Fo < v/12(F + 1) (a—(n3) + ax(n3)) < /20 + Dnz" < V/2(5+ 1)

< cosh™'(|g]7"),
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and thus
1 + g cosh(y/212(g + 1)Zg) > 0.

By considering this inequality we can deduce from (3.23) and the definition of
that there exists £ € R.g such that %= (z,§) > 0 for any = € (2 — &, + &)\ {2}
This coupled with (3.23) means that 7 is a rising SPI of F..(-,¢). Since we have
(3.22), we can apply Lemma 2.8 (i) to ensure that there exists U € [—Uj,0) such
that 7(-) has a falling SPT in (0, 3,). Here &2 = /1)y € (\/11, \/73)-

Now we can see that the claim (ii) holds with e1 = /N1, ea = /7.

(iii): By using Lemma 3.3 (ii) in place of Lemma 3.3 (i) we can repeat the same
argument as the 1st half of the proof of (ii) to prove the claim. O

In [25, Proposition 2.25] we derived 7(3) exactly. Let us numerically implement
the exact solution to observe that 7(-) has SPIs as suggested by Proposition 3.1.
Weset b=8,0 =7, epm =1, U = —1 so that 2 € (1,3-2v2), |U]| € (0, Zomin),
In fact these parameters take the same values as in the numerical example in [25,
Sub-subsection 2.3.1]. Based on Proposition 3.1 (ii), we expect that we can find

e1, ey € (0,4/17 — 124/2) such that ey < e; and if €0, = 6—11, 7(-) has a rising SPI,
if €ar = é, 7(+) has a falling SPI. In Figure 4 we plot the graphs of 7(5), g—g(ﬁ)
for e,,q, = 6.643, 8.342. We can see that 7(-) has a rising SPI when e,,,, = 6.643
and 7(-) has a falling SPI when e,,,, = 8.342. T his means that our expectation

= o=(~ 0.1505), e = (= 0.1199) € (0,17 — 12V/2)

8.342 342

is realized with e; =

(=~ (0,0.1716)).
Concerning the model (2), we claim the following proposition. In fact it is an

immediate consequence of Lemma 2.7 and the proof of [25, Proposition 2.26].

Proposition 3.5. For any t € Rxg, enin € Roq there exists Uy € (0, 2e:,) such
that for any U € [—U,,0) 7(-) has no SPI in (0, 3.).

Proof. We have shown in the proof of [25, Proposition 2.26] that there exists yy €
(—1,0) such that for any y € (—1,y] there uniquely exists xy € Ry such that
6F°°( 0,y) = 0. See around the equation “(2.101)” in [25]. Then Lemma 2.7 with
S = {E,} ensures the result. O
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